题目描述
已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22
3+7+19=29
7+12+19=38
3+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29)。
输入输出格式
输入格式:
键盘输入,格式为:
n , k (1<=n<=20,k<n)
x1,x2,…,xn (1<=xi<=5000000)
输出格式:
屏幕输出,格式为:
一个整数(满足条件的种数)。
输入输出样例
输入样例#1:
4 3
3 7 12 19输出样例#1:
1
源代码
#include<iostream>
#include<cmath>
using namespace std;
bool prime(int n);
void judge(int k,int i,int sum,int number[],int n);
int total=0;
int main()
{
int n,k;
int number[20];
int i;
int count=0;
cin>>n>>k;
for(i=0;i<n;i++) cin>>number[i];
if(n==k)
{
for(i=0;i<n;i++) count+=number[i];//计算数据和
if(prime(count)) cout<<1<<endl;//调用函数判断是否是素数
else cout<<0<<endl;
}
else
{
judge(k,0,0,number,n);//调用函数计算和
cout<<total<<endl;
}
return 0;
}
bool prime(int n)//判断是否是素数的函数
{
int i;
if(n==2) return true;
if(n%2==0) return false;
for(i=3;i<sqrt(n);i+=2)
if(n%i==0) return false;
return true;
}
void judge(int k,int i,int sum,int number[],int n)
{
if(k==0)//判断数据是否是素数
if(prime(sum))
total++;
for(;i<n;i++)
judge(k-1,i+1,sum+number[i],number,n);//递归调用计算数据个数
}