合并果子(洛谷-P1090)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011815404/article/details/79945383

题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 种果子,数目依次为 11 , 22 , 99 。可以先将 11 、 22 堆合并,新堆数目为 33 ,耗费体力为 33 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212 ,耗费体力为 1212 。所以多多总共耗费体力 =3+12=15=3+12=15 。可以证明 1515 为最小的体力耗费值。

输入输出格式

输入格式:

输入包括两行,第一行是一个整数 n(1\leq n\leq 10000)n(1≤n≤10000) ,表示果子的种类数。第二行包含 nn个整数,用空格分隔,第 ii 个整数 a_i(1\leq a_i\leq 20000)ai​(1≤ai​≤20000) 是第 ii 种果子的数目。

输出格式:

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^{31}231 。

输入输出样例

输入样例#1:

3 
1 2 9 

输出样例#1:

15

———————————————————————————————————————————————

思路:只需要把最小的两个果堆加起来就可以

源代码

#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
    int n,a[10001]={0};
    int strength=0;
    int i,j,k;
    
    cin>>n;
    for(i=1;i<=n;i++)	cin>>a[i];
    
    sort(a+1,a+n+1);//将所有果堆从小到大进行排序
    
    for(i=1;i!=n;n--)//共合并n-1次
    {
        a[i]=a[i]+a[i+1];//合并果堆
        strength=strength+a[i];//合并所用的力量
        for(j=i+1;j<n;j++)	a[j]=a[j+1];//将原来的果堆整体向前移动一位	
        
        if(a[i]>a[i+1])
            for(k=i;k<n-1;k++)//将合并后的果堆重新排序
                if(a[k]>a[k+1])
                    swap(a[k],a[k+1]);
    }

    cout<<strength<<endl;
    
    return 0;
}
阅读更多

没有更多推荐了,返回首页