汉诺塔问题(信息学奥赛一本通-T1205)

【题目描述】

约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。

这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615

这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。

假定圆盘从小到大编号为1, 2, ...

【输入】

输入为一个整数(小于20)后面跟三个单字符字符串。整数为盘子的数目,后三个字符表示三个杆子的编号。

【输出】

输出每一步移动盘子的记录。一次移动一行。每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。

【输入样例】

2 a b c

【输出样例】

a->1->c
a->2->b
c->1->b

【源程序】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define N 1000010
using namespace std;
void Hanoi(int n,char a,char c,char b)
{
    if(n==1)
    {
        printf("%c->%d->%c\n",a,n,b);
        return ;
    }
    Hanoi(n-1,a,b,c);
    printf("%c->%d->%c\n",a,n,b);
    Hanoi(n-1,c,a,b);
}
int main()
{
    int n;
    char a,b,c;
    cin>>n>>a>>b>>c;
    Hanoi(n,a,c,b);
    return 0;
}

 

### 关于信息学奥赛一本题目1486的解法 对于信息学奥赛一本中的题目1486,虽然具体描述未直接提供,但从该系列书籍的一贯风格来看,这类问题常涉及较为复杂的逻辑推理或特定算法的应用。考虑到其他类似题目的处理方式[^1],可以推测此题也可能涉及到递归、贪心算法或是动态规划等常见竞赛编程技巧。 #### 可能适用的方法论 假设题目1486属于经典的递推类问题,则解决方案往往依赖于找到合适的递推关系式来简化复杂度较高的运算过程。例如,在解决汉诺塔问题时采用了递归的思想,过不断分解子问题直至达到基础情况从而实现整体求解。如果本题也具备类似的特性,那么构建合理的状态转移方程将是解决问题的关键所在。 另外,当面对需要优化某些条件下的最优解的情况时,如寻找满足一定条件下最小值等问题,贪心策略可能会被采用。正如在另一个实例中所展示的那样,过对目标数值进行位操作分析进而快速定位符合条件的结果[^2]。这种方法同样适用于那些能够逐步做出局部最佳选择最终累积成全局最优方案的情形。 最后,针对序列型数据结构的操作,比如数组内元素连续相同片段长度统计这样的任务,循环遍历配合计数器更新是一种直观有效的手段。这里给出了一段C++代码用于计算最长水平线段长度作为参考[^3]: ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; vector<int> a(n); for (auto& x : a) cin >> x; int maxLen = 0, currentLen = 1; for (size_t i = 0; i < n - 1; ++i){ if (a[i] == a[i + 1]){ ++currentLen; } else { maxLen = max(maxLen, currentLen); currentLen = 1; } } // 更新最后一次比较后的最大值 maxLen = max(maxLen, currentLen); cout << maxLen; } ``` 需要注意的是上述代码已经过改进以适应更广泛的数据范围,并修正了一些潜在错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值