最大子矩阵(信息学奥赛一本通-T1282)

本文介绍了一种求解二维矩阵中最大子矩阵和的高效算法。通过动态规划的方法,文章详细阐述了如何针对给定的N×N矩阵找出具有最大和的非空子矩阵,并给出了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 × 1)子矩阵。

比如,如下4 × 4的矩阵

0  -2 -7  0

9  2 -6  2

-4  1 -4  1

-1  8  0 -2

的最大子矩阵是

 9 2

-4 1

-1 8

这个子矩阵的大小是15。

【输入】

输入是一个N×N的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[−127,127]。

【输出】

输出最大子矩阵的大小。

【输入样例】

4
0 -2 -7  0
9  2 -6  2
-4  1 -4  1
-1  8  0 -2

【输出样例】

15

【源程序】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 2520
#define E 1e-12
using namespace std;
int a[N][N],f[N];
int maxArray(int t[],int n)
{
    int sum=0,maxx=-INF;
    for(int i=1;i<=n;i++)
    {
        if(sum>0)
            sum+=t[i];
        else
            sum=t[i];
        if(sum>maxx)
            maxx=sum;
    }
    return maxx;
}
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            cin>>a[i][j];

    int maxx=-INF;
    for(int i=1;i<=n;i++)
    {
        memset(f,0,sizeof(f));
        for(int j=i;j<=n;j++)
        {
            for(int k=1;k<=n;k++)
                f[k]+=a[j][k];

            int temp=maxArray(f,n);
            if(temp>maxx)
                maxx=temp;
        }
    }

    cout<<maxx<<endl;

    return 0;
}

 

### 关于信息学奥赛一本题目1339的解法 对于信息学奥赛一本中的题目1339,该题目的名称为“最大子矩阵和”。这道题目要求在一个给定的整数矩阵中找到一个子矩阵,使得这个子矩阵内所有元素之和最大。 为了求解这个问题,可以采用动态规划的方法来解决。具体来说,可以过枚举上下边界的方式将二维问题转化为一维的最大连续子序列和的问题。下面是一个具体的实现方案: #### 动态规划思路 过固定上边界i并逐步增加下边界j,在每次更新时计算当前范围内每一列的累加值sum[k] (k代表第k列),这样就得到了一个新的数组sum[]。此时原问题转化成了在一维数组sum[]里寻找最大的连续子段和的问题[^1]。 #### C++代码示例 ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 105; int mat[MAXN][MAXN]; int sum[MAXN]; // 计算一维数组的最大子序和函数 int maxSubArraySum(int arr[], int size) { int max_so_far = INT_MIN, max_ending_here = 0; for (int i = 0; i < size; i++) { max_ending_here += arr[i]; if (max_so_far < max_ending_here) max_so_far = max_ending_here; if (max_ending_here < 0) max_ending_here = 0; } return max_so_far; } void solve() { int N; cin >> N; // 输入矩阵数据 for (int i = 1; i <= N; ++i) for (int j = 1; j <= N; ++j) cin >> mat[i][j]; int result = INT_MIN; // 枚举上下边界的组合 for (int top = 1; top <= N; ++top) { fill(sum + 1, sum + N + 1, 0); // 初始化每列累积值 for (int bottom = top; bottom <= N; ++bottom) { // 更新当前范围内的各列累计值 for (int k = 1; k <= N; ++k) sum[k] += mat[bottom][k]; // 使用 Kadane's Algorithm 寻找最大子阵列和 result = max(result, maxSubArraySum(sum, N)); } } cout << "Max Sum of Submatrix is: " << result << endl; } ``` 这段程序首先定义了一个辅助函数`maxSubArraySum()`用于处理转换后的一维数组上的最大连续子序列和查询;接着在外层循环遍历所有的可能矩形区域,并调用上述函数获取这些区域内元素总和的最大值作为最终的结果输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值