方格取数(信息学奥赛一本通-T1277)

【题目描述】

设有N×N的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:

某人从图中的左上角A出发,可以向下行走,也可以向右行走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。

【输入】

第一行为一个整数N(N≤10),表示N×N的方格图。

接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。一行“0 0 0”表示结束。

【输出】

第一个整数,表示两条路径上取得的最大的和。

【输入样例】

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0

【输出样例】

67

【源程序】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 101
#define MOD 2520
#define E 1e-12
using namespace std;
int g[N][N],f[N][N][N][N];
int main()
{
    int n;
    int a,b,c;
    cin>>n;;
    while(scanf("%d%d%d",&a,&b,&c)!=EOF&&a&&b&&c)
        g[a][b]=c;

    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=n;k++)
                for(int l=1;l<=n;l++)
                {
                    int temp1=max(f[i-1][j][k-1][l],f[i-1][j][k][l-1]);
                    int temp2=max(f[i][j-1][k-1][l],f[i][j-1][k][l-1]);
                    f[i][j][k][l]=max(temp1,temp2)+g[i][j];
                    if(i!=k&&j!=l)
                        f[i][j][k][l]+=g[k][l];
                }

    cout<<f[n][n][n][n]<<endl;
    return 0;
}

 

### 关于信息学奥赛一本 T1451 棋盘游戏的解法 #### 题目概述 题目描述了一个棋盘上的游戏,其中涉及到特定规则下的移动。为了找到解决方案,可以采用深度优先搜索(DFS)策略来遍历所有可能的状态空间树。 #### 使用 DFS 进行状态空间探索 过构建一个递归函实现深搜算法,在每一步尝试所有的合法走步,并记录当前路径直到达到终止条件为止。当遇到重复访问过的节点或是不符合要求的情况时应回溯并继续其他分支的查找过程[^1]。 ```cpp #include <iostream> using namespace std; const int N = 8; bool visited[N][N]; int dx[] = {2, 1, -1, -2, -2, -1, 1, 2}; int dy[] = {1, 2, 2, 1, -1, -2, -2, -1}; void dfs(int x, int y) { if (/* 终止条件 */) { // 输出结果或计器加一 return; } for (int i = 0; i < 8; ++i) { int nx = x + dx[i], ny = y + dy[i]; if (nx >= 0 && nx < N && ny >= 0 && ny < N && !visited[nx][ny]) { visited[nx][ny] = true; dfs(nx, ny); visited[nx][ny] = false; // 回溯操作 } } } ``` 此代码片段展示了如何利用八个方向组模拟马在国际象棋中的跳跃动作,并结合`dfs()`方法完成整个棋局可能性枚举的任务。 #### 处理同行同列及对角线冲突 对于某些情况下需要排除掉位于同一行列以及主副两条斜线上方格的情形,则可以在每次扩展新位置之前加入额外判断逻辑以跳过这些非法选项[^2]: ```cpp if ((abs(x1-x2)==abs(y1-y2)) || (x1==x2)|| (y1==y2)){ continue; // 如果在同一行/列 或 对角线上则不计入下一步的选择之中 } ``` 上述代码段用于检测两个坐标点之间是否存在直线连接关系,从而决定是否允许该次转移发生。 #### 应用 BFS 寻找最优解 考虑到可能存在多条可行路线往终点,而题目往往追求的是最少步方案;此时引入队列结构支持下的广度优先搜索能够有效地保证最先抵达目的地的就是所求答案之一[^3]。 ```cpp queue<pair<int,int>> q; q.push({startX,startY}); while(!q.empty()){ auto [cur_x, cur_y]=q.front();q.pop(); if(/* 到达目标 */){ break; } for(auto& dir:{...} /* 定义好各个行走模式*/ ){ int next_x=cur_x+dir.first,next_y=cur_y+dir.second; if(/* 合法性验证 */){ ... } } } ``` 这段伪代码框架说明了怎样借助FIFO性质的据容器配合循环迭代机制逐步向外层扩散直至触及边界或满足结束标志位的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值