分治 —— 二分法

【概述】

二分法,是十分常见的问题,其在一个单调有序的集合或函数中查找一个解,每次分为左右两部分,通过判断解在哪部分来调整上下界,直到找到目标元素,其与各种算法的结合比较密切,关于其原理:点击这里

若求解的问题的定义域为整数域,对于长度为 n 的求解区间,算法需要 logn 次来确定分界点;若求解的问题的定义域是实数域,由于实数运算的精度问题,则判定 R-L 的精度是否达到要求是问题的关键,即:R-L>=EPS,若 EPS 取的过小会导致程序死循环。

【实现】

除了查找元素、查找连续函数外,还可以使用 STL 容器中的 lower_bound()、upper_bound() 函数,具体使用:点击这里

1.查找元素

int BinarySearch(int a[],int x,int x){
    int left=0;//left为集合下界
    int right=n-1//right为集合上界
    int res=-1;
    while(left<=right){
        int mid=(left+right)/2;//设置中值
        if(num[mid]==x){//查找到符合元素x
            res=mid;
            break;
        }
        else if(num[mid]<x)//x在右边部分
           low=mid+1;//调整集合下界
        else//x在左边部分
           high=mid-1;//调整集合上界
    }
    return res;//若未找到x,则res= -1
}

2.查找连续函数

#define EPS 1E-9
bool cal(int x){
    ...
}
int BinarySearch(double low,double high){//low为区间下界,high为区间上界
    double mid;//中值
    double left=low;//设置当前查找区间上界的初值
    double right=high;//设置当前查找区间下界的初值
    while(right-left>EPS){
        mid=(right+left)/2;//设置中值
        if(cal(mid)<x)//函数结果小于带查找的值
            left=mid;//说明在右边部分,调整集合下界
        else
            right=mid;//说明在左边部分,调整集合上界
    }
    return mid;
}

【例题】

1.查找元素

  1. 丢瓶盖(洛谷-P1316):点击这里
  2. Block Towers(CF-626C):点击这里
  3. Widespread(AtCoder-2580):点击这里
  4. Aggressive cows(POJ-2456):点击这里
    同题:愤怒的牛(信息学奥赛一本通-T1433):点击这里
  5. River Hopscotch(POJ-3258):点击这里
    同题:河中跳房子(信息学奥赛一本通-T1247):点击这里
  6. Can you find it?(HDU-2141):点击这里
  7. Median(POJ-3579):点击这里
  8. 相离的圆(51Nod-1278)(lower_bound() 函数)点击这里
  9. Points on Line(CF-252C)(upper_bound() 函数)点击这里
  10. Monthly Expense( POJ-3273)(最小组数和)点击这里
    同题:月度开销(信息学奥赛一本通-T1243):点击这里
  11. 数列分段`Section II`(洛谷-P1182)(二分+累加和)点击这里
    数列分段II(信息学奥赛一本通-T1436):点击这里
  12. Go Home(AtCoder-2354)(二分+前缀和)点击这里
  13. Artificial Lake(POJ-3658)(二分+模拟)点击这里
  14. The hat(CF-1020D)(二分+格式控制输出)点击这里
  15. 查找最接近的元素(信息学奥赛一本通-T1240)(二分+绝对值比较)点击这里
  16. Gadgets for dollars and pounds(CF-609D)(二分+贪心)点击这里
  17. 炫酷划线(2019牛客寒假算法基础集训营 Day5-E)(二分+栈)点击这里
  18. 只包含因子 2 3 5 的数(51Nod-1010)(二分+打表)点击这里
  19. Sweets for Everyone!(CF-248D)(二分+模拟)点击这里
  20. No Need(AtCoder-2346)(bitset+二分)点击这里

2.查找连续函数

  1. 二分法求函数的零点(信息学奥赛一本通-T1241):点击这里
  2. 一元三次方程求解(信息学奥赛一本通-T1238):点击这里
  3. Can you solve this equation?(HDU-2199):点击这里
  4. Pie(HDU-1969):点击这里
  5. Cable master(HDU-1551):点击这里
    同题:网线主管(信息学奥赛一本通-T1242):点击这里
  6. 膨胀的木棍(信息学奥赛一本通-T1246)(二分+数学推导)点击这里
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值