炫酷划线

【题目描述】

平面上有一个圆,圆环上按顺时针顺序分布着从1到n,一共n个点。

现在无聊的小希开始按某种顺序对其在圆内两两连线,小希尽量避免让两条线碰撞,可是有的时候,这显然避免不了。

现在你知道小希划线的顺序是什么,请你判断小希在最优情况下,什么时候会被迫使得线相交,输出最早的时刻(是第几条线)

【输入描述】

数据第一行一个整数T,表示数据组数。

每组数据第一行输入两个整数N,M,代表点的个数和游戏进行的轮数。

随后M行,每行两个整数ai,bi,表示两个点之间连线。

数据保证每个点最多被连线一次。

T≤10
1≤N,M≤100000
1≤ai,bi≤100000

【输出描述】

对于每组数据,一行。

如果中途某一条线开始无法避免相交,则输出当轮轮数。

否则,输出-1。

【样例】

示例1

输入
2
10 4
5 3
1 9
2 6
7 10
4 2
1 2
3 4
输出
4
-1

思路:

轮数可以用二分,枚举每一轮去判断当前轮是否有两点相交,而两点是否相交可借助栈来实现,首先预处理点,然后将点入栈,不断的读取栈中元素与所有点,判断是否相交,

【源代码】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#define PI acos(-1.0)
#define E 1e-6
#define INF 0x3f3f3f3f
#define N 100001
#define LL long long
const int MOD=1e9+7;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
using namespace std;

int n,m;
int x[N],y[N];
int vis[N];
bool judge(int num){//当前轮数
    memset(vis,0,sizeof(vis));
    stack<int> S;

    for(int i=0;i<num;i++){//预处理
        vis[x[i]]=x[i];
        vis[y[i]]=-x[i];
    }

    for(int i=0;i<n;i++){//枚举所有点
        if(vis[i]>0)//若点是始点,进栈
            S.push(vis[i]);
        else if(vis[i]<0){//若点是终点
            int temp=S.top();
            if(temp==-vis[i])//栈顶元素与当前元素是一个点,未相交
                S.pop();//出栈
            else
                return false;
        }
    }
    return true;
}
int main(){
    int t;
    cin>>t;
    while(t--){
        cin>>n>>m;
        for(int i=0;i<m;i++){
            cin>>x[i]>>y[i];
            if(x[i]>y[i])//保证大点在前
                swap(x[i],y[i]);
        }

        //对游戏轮数进行二分
        int left=1,right=m;
        while(left<=right){
            int mid=(left+right)/2;
            if(judge(mid))
                left=mid+1;
            else
                right=mid-1;
        }
        if(left>m)
            cout<<-1<<endl;
        else
            cout<<left<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值