Colorful Graph(CF-246D)

Problem Description

You've got an undirected graph, consisting of n vertices and m edges. We will consider the graph's vertices numbered with integers from 1 to n. Each vertex of the graph has a color. The color of the i-th vertex is an integer ci.

Let's consider all vertices of the graph, that are painted some color k. Let's denote a set of such as V(k). Let's denote the value of the neighbouring color diversity for color k as the cardinality of the set Q(k) = {cu :  cu ≠ k and there is vertex v belonging to set V(k) such that nodes v and u are connected by an edge of the graph}.

Your task is to find such color k, which makes the cardinality of set Q(k) maximum. In other words, you want to find the color that has the most diverse neighbours. Please note, that you want to find such color k, that the graph has at least one vertex with such color.

Input

The first line contains two space-separated integers n, m (1 ≤ n, m ≤ 105) — the number of vertices end edges of the graph, correspondingly. The second line contains a sequence of integers c1, c2, ..., cn (1 ≤ ci ≤ 105) — the colors of the graph vertices. The numbers on the line are separated by spaces.

Next m lines contain the description of the edges: the i-th line contains two space-separated integers ai, bi (1 ≤ ai, bi ≤ n; ai ≠ bi) — the numbers of the vertices, connected by the i-th edge.

It is guaranteed that the given graph has no self-loops or multiple edges.

Output

Print the number of the color which has the set of neighbours with the maximum cardinality. It there are multiple optimal colors, print the color with the minimum number. Please note, that you want to find such color, that the graph has at least one vertex with such color.

Examples

Input

6 6
1 1 2 3 5 8
1 2
3 2
1 4
4 3
4 5
4 6

Output

3

Input

5 6
4 2 5 2 4
1 2
2 3
3 1
5 3
5 4
3 4

Output

2

题意:给出 n 个点 m 条边的无向图,现在每个点都有一个颜色,当两点相邻时,视为两种颜色相邻,问哪种颜色与其他相邻的颜色的种类数最多

思路:使用 set 即可解决,将每种颜色都存入一个 set,然后比较所有 set 大小,取最大的那个,需要注意的是,当输出有多个最多的颜色种类时,要输出数字小的输出

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
const double EPS = 1E-10;
const int MOD = 1E9+7;
const int N = 100000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;

int a[N];
set<int> st[N];
int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);

    for(int i=1;i<=m;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        if(a[x]!=a[y]){
            x=a[x];
            y=a[y];
            st[x].insert(y);
            st[y].insert(x);
        }
    }

    int minn=INF;
    for(int i=1;i<=n;i++)
        minn=min(minn,a[i]);
    for(int i=1;i<=n;i++)
        if(st[minn].size()<st[i].size())
            minn=i;

    printf("%d\n",minn);

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值