DUSt3R部署+体验

最近新出的DUSt3R在几张图片的情况下,快速输出3D模型,所以来体验下。

简介

DUSt3R,一种用于任意图像集合的密集和无约束立体 3D 重建的全新范例,即在没有有关相机校准或视点姿势的先验信息的情况下进行操作。DUSt3R 使几何 3D 视觉任务变得简单。

说人话,就是传统的相机姿势估计那一套我不用,但是也可以准确找到相机姿势。

部署

官方的部署文档很全也很简单。依次按照操作即可。

注意pytorch的安装需要根据自己的GPU替换命令。命令可在pytorch官网进行下载。

模型下载

官方部署文档页面提供了3个模型,但是下载最后一个模型即可。后续命令默认的模型也是最后一个。

体验

GUI-demo

我尝试运行demo,GUI没有运行起来,也没有报错,不知道什么原因。

python3 demo.py --weights checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth

脚本体验

新增一个test.py,将官方文档的Usage脚本贴进去,替换图片路径。

执行脚本,结果自动弹出:

训练

暂时没有想法进行训练,不做说明。

评价

1、速度确实快

2、效果,没那好,因为是点状的,而且比较稀疏,稍微拉大一点就是点云了,就看不清楚内容了。

### Dust3R-SLAM 技术概述 Dust3R-SLAM 是一种基于视觉的 SLAM (Simultaneous Localization and Mapping) 系统,旨在通过摄像头输入实现环境的三维重建和机器人自身的精确定位。该系统利用空间记忆机制来增强长期运行下的稳定性和准确性[^2]。 ### 使用教程 #### 下载与安装 为了获取并设置 Dust3R-SLAM 开发环境,请按照以下说明操作: 1. **克隆仓库** 执行命令以下载项目源码到本地计算机: ```bash git clone https://github.com/HengyiWang/spann3r.git cd spann3r ``` 2. **依赖项准备** 安装必要的 Python 库和其他工具包,通常可以通过 pip 或者 conda 来完成这些库的安装工作。具体需求见 `requirements.txt` 文件。 ```bash pip install -r requirements.txt ``` #### 配置环境变量 确保所有路径配置正确无误,并根据个人操作系统调整相应的 shell profile 脚本(如 `.bashrc`, `.zshrc`)。添加如下行至文件末尾以便于后续调用程序时自动加载所需环境变量: ```shell export SPANNNER_PATH=/path/to/your/cloned/repo source $SPANNNER_PATH/scripts/setup_env.sh ``` #### 编译 C++ 组件 如果存在任何编写的C/C++扩展模块,则需遵循官方文档指示进行编译过程。一般情况下会涉及到 cmake 工具链以及 make 命令的应用: ```bash mkdir build && cd $_ cmake .. make -j$(nproc) cd .. ``` ### 示例代码展示 下面给出一段简单的Python脚本来启动 Dust3R-SLAM 并处理视频流作为输入数据源之一: ```python from dust3r_slam import SpanNer, Visualizer if __name__ == "__main__": # 初始化Spanner实例 slam_system = SpanNer() try: while True: frame = get_next_frame() # 用户自定义函数用于读取图像帧 if not frame.any(): break result = slam_system.process(frame) visualizer = Visualizer(result['map'], result['pose']) visualizer.show() finally: slam_system.shutdown() ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值