智能优化算法应用:基于蚁狮优化算法的工程优化案例-附代码

文章介绍了使用蚁狮算法解决三个工程优化问题:压力容器设计、三杆桁架设计和拉压弹簧设计。在每个案例中,都详细给出了目标函数、约束条件以及Matlab和Python的代码实现,展示了蚁狮算法在智能寻优上的应用。
摘要由CSDN通过智能技术生成

智能优化算法应用:基于蚁狮算法的工程优化案例


摘要:本文介绍利用蚁狮搜索算法,对工程优化案例问题进行智能寻优。

1.蚁狮算法

蚁狮算法具体原理请参照:https://blog.csdn.net/u011835903/article/details/107726004

2.压力容器设计问题

图1.压力容器示意图

压力容器设计问题的目标是使压力容器制作(配对、成型和焊接)成本最小,压力容器的设计如图1所示,压力容器的两端都有盖子封顶,头部一端的封盖为半球状. L L L 是不考虑头部的圆柱体部分的截面长度, R R R是圆柱体部分的内壁直径, T s T_s Ts T h T_h Th分别表示圆柱体部分壁厚和头部的壁厚, L L L R R R T s T_s Ts T h T_h Th 即为压力容器设计问题的四个优化变量. 问题的目标函数和四个优化约束表示如下:
x = [ x 1 , x 2 , x 3 , x 4 ] = [ T s , T h , R , L ] x=[x_1,x_2,x_3,x_4]=[T_s,T_h,R,L] x=[x1,x2,x3,x4]=[Ts,Th,R,L]

M i n f ( x ) = 0.6224 x 1 x 3 x 4 + 1.7781 x 2 x 3 2 + 3.1661 x 1 2 x 4 + 19.84 x 1 2 x 3 Minf(x)=0.6224x_1x_3x_4+1.7781x_2x_3^2+3.1661x_1^2x_4+19.84x_1^2x_3 Minf(x)=0.6224x1x3x4+1.7781x2x32+3.1661x12x4+19.84x12x3

约束条件为:
g 1 ( x ) = − x 1 + 0.0193 x 3 ≤ 0 g_1(x)=-x_1+0.0193x_3\leq0 g1(x)=x1+0.0193x30

g 2 ( x ) = − x 2 + 0.00954 x 3 ≤ 0 g_2(x)=-x_2+0.00954x_3\leq0 g2(x)=x2+0.00954x30

g 3 ( x ) = − π x 3 2 − 4 π x 3 3 / 3 + 1296000 ≤ 0 g_3(x)=-\pi x_3^2-4\pi x_3^3/3+1296000 \leq0 g3(x)=πx324πx33/3+12960000

g 4 ( x ) = x 4 − 240 ≤ 0 g_4(x)=x_4-240\leq0 g4(x)=x42400

0 ≤ x 1 ≤ 100 , 0 ≤ x 2 ≤ 100 , 10 ≤ x 3 ≤ 100 , 10 ≤ x 4 ≤ 100 0\leq x_1\leq100,0\leq x_2\leq100,10\leq x_3\leq100,10\leq x_4\leq100 0x1100,0x2100,10x3100,10x4100

参数设定:

clear all 
clc
SearchAgents_no=100; %种群数量
Max_iteration=500; %设定最大迭代次数
dim = 4;%维度为4,即x1-x4
lb = [0,0,10,10];%参数下边界
ub =[100,100,200,200];%参数上边界
fobj = @(x) funP(x);

实验结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gnsg3CBb-1678000398989)(D:\Self\Intelligent algorithm Application\工程案例\基于蚁狮优化算法的工程优化案例\结果1.png)]

3.三杆桁架设计问题

三杆桁架设计问题的目的是通过调整横截面积( x 1 , x 2 x_1,x_2 x1,x2​ )来最小化三杆桁架的体积。该三杆式桁架在每个桁架构件上受到应力(σ )约束,如图 2所示。该优化问题具有一个非线性适应度函数、3个非线性不等式约束和两个连续决策变量,如下所示:

图2

图2.三杆桁架设计问题示意图

m i n   f ( x ) = ( 2 2 x 1 + x 2 ) l min\,f(x)=(2\sqrt{2}x_1+x_2)l minf(x)=(22 x1+x2)l

约束条件为:
g 1 ( x ) = 2 x 1 + x 2 2 x 1 2 + 2 x 1 x 2 P − σ ≤ 0 g_1(x)=\frac{\sqrt{2}x_1+x_2}{\sqrt{2}x_1^2+2x_1x_2}P-\sigma\leq0 g1(x)=2 x12+2x1x22 x1+x2Pσ0

g 2 ( x ) = x 2 / ( 2 x 1 2 + 2 x 1 x 2 ) P − σ ≤ 0 g_2(x)=x_2/(\sqrt2x_1^2+2x_1x_2)P-\sigma\leq0 g2(x)=x2/(2 x12+2x1x2)Pσ0

g 3 ( x ) = 1 2 x 2 + x 1 P − σ ≤ 0 g_3(x)=\frac{1}{\sqrt2x_2+x_1}P-\sigma\leq0 g3(x)=2 x2+x11Pσ0

l = 100 c m , P = 2 k N / c m 2 , σ = 2 k N / c m 2 l=100cm,P=2kN/cm^2,\sigma=2kN/cm^2 l=100cm,P=2kN/cm2,σ=2kN/cm2

参数设定:

clear all 
clc
SearchAgents_no=100; %种群数量
Max_iteration=500; %设定最大迭代次数
dim = 2;%维度为2,即x1-x2
lb = [0,0];%参数下边界
ub =[1,1];%参数上边界
fobj = @(x) funS(x);

实验结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MgO8n8Db-1678000398990)(D:\Self\Intelligent algorithm Application\工程案例\基于蚁狮优化算法的工程优化案例\结果2.png)]

4.拉压弹簧设计问题

如图 3 所示,拉压弹簧设计问题的目的是在满足最小挠度、震动频率和剪应力的约束下,最小化拉压弹簧的重量。该问题由 3 个连续的决策变量组成,即弹簧线圈直径( d d d x 1 x_1 x1 )、弹簧簧圈直径( D D D x 2 x_2 x2)和绕线圈数( P P P x 3 x_3 x3​ )。数学模型表示公式如下:

图3

图3.拉压弹簧设计问题示意图

m i n   f ( x ) = ( x 3 + 2 ) x 2 x 1 2 min\,f(x)=(x_3+2)x_2x_1^2 minf(x)=(x3+2)x2x12

约束条件为:
g 1 ( x ) = 1 − x 2 3 x 3 71785 x 1 4 ≤ 0 g_1(x)=1-\frac{x_2^3x_3}{71785x_1^4}\leq0 g1(x)=171785x14x23x30

g 2 ( x ) = 4 x 2 2 − x 1 x 2 12566 ( x 2 x 1 3 − x 1 4 ) + 1 5108 x 1 2 − 1 ≤ 0 g_2(x)=\frac{4x_2^2-x_1x_2}{12566(x_2x_1^3-x_1^4)}+\frac{1}{5108x_1^2}-1\leq0 g2(x)=12566(x2x13x14)4x22x1x2+5108x12110

g 3 ( x ) = 1 − 140.45 x 1 x 2 2 x 3 ≤ 0 g_3(x)=1-\frac{140.45x_1}{x_2^2x_3}\leq0 g3(x)=1x22x3140.45x10

g 4 ( x ) = x 1 + x 2 1.5 − 1 ≤ 0 g_4(x)=\frac{x_1+x_2}{1.5}-1\leq0 g4(x)=1.5x1+x210

0.05 ≤ x 2 ≤ 2 , 0.25 ≤ x 2 ≤ 1.3 , 2 ≤ x 3 ≤ 15 0.05\leq x_2\leq2,0.25\leq x_2\leq1.3,2\leq x_3\leq15 0.05x22,0.25x21.3,2x315

参数设定:

clear all 
clc
SearchAgents_no=100; %种群数量
Max_iteration=500; %设定最大迭代次数
dim = 3;%维度为3,即x1-x3
lb = [0.05,0.25,2];%参数下边界
ub =[2,1.3,15];%参数上边界
fobj = @(x) funS(x);

实验结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

6.python代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值