基于JAYA算法改进的随机森林回归算法

基于JAYA算法改进的随机森林回归算法


摘要:为了提高随机森林数据的回归预测准确率,对随机森林中的树木个数和最小叶子点数参数利用JAYA搜索算法进行优化。

1.数据集

数据信息如下:

data.mat 的中包含input数据和output数据

其中input数据维度为:2000*2

其中output数据维度为2000*1

所以RF模型的数据输入维度为2;输出维度为1。

2.RF模型

随机森林请自行参考相关机器学习书籍。

3.基于JAYA算法优化的RF

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600

JAYA算法的优化参数为RF中树木个数和最小叶子节点数。适应度函数为RF对训练集和测试集的均方误差(MSE),均方误差MSE越低越好。
f i n t e n e s s = M S E [ p r e d i c t ( t r a i n ) ] + M S E [ p r e d i c t ( t e s t ) ] finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]

4.测试结果

数据划分信息如下: 训练集数量为1900组,测试集数量为100组

JAYA参数设置如下:

%% 定义JAYA优化参数
pop=20; %种群数量
Max_iteration=30; %  设定最大迭代次数
dim = 2;%维度,即树个数和最小叶子点树
lb = [1,1];%下边界
ub = [50,20];%上边界
fobj = @(x) fun(x,Pn_train,Tn_train,Pn_test,Tn_test);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从MSE结果来看,经过改进后的SSA-RF明显优于未改进前的结果。

5.Matlab代码

6.Python代码

### 基于JAYA算法改进的预测算法 #### 改进方向与应用领域 Jaya算法作为一种新兴的优化算法,因其简单易懂、参数少以及快速收敛的特点而受到广泛关注[^4]。该算法已被应用于多个领域,特别是在解决复杂工程问题中的表现尤为突出。 对于基于JAYA算法改进的预测算法而言,主要集中在以下几个方面: - **增强全局搜索能力**:通过引入混沌映射或其他机制来提高探索空间的能力。 - **加速局部开发效率**:利用自适应策略调整步长或权重因子以加快接近最优解的速度。 - **融合其他启发式技术**:结合粒子群优化(PSO)、遗传算法(GA)等方法进一步提升性能。 #### MATLAB代码实例 下面是一个简单的MATLAB代码示例,展示了如何使用改进后的Jaya算法来进行前馈神经网络(FNN)的训练和预测。 ```matlab function [bestPosition, bestFitness] = improved_jaya_algorithm(populationSize, maxIteration, lowerBound, upperBound, fitnessFunction) % 初始化种群位置矩阵 population = rand(populationSize, length(lowerBound)) .* (upperBound - lowerBound) + lowerBound; % 计算初始适应度值并找到最佳个体 [~, idxBest] = min(cellfun(fitnessFunction, num2cell(population, 2))); bestPosition = population(idxBest,:); bestFitness = cell2mat(cellfun(fitnessFunction, {bestPosition}, 'UniformOutput', false)); for iter = 1:maxIteration worstFitness = inf; for i = 1:populationSize currentSolution = population(i,:); % 获取当前解决方案对应的适应度函数值 currentFitness = cell2mat(cellfun(fitnessFunction, {currentSolution}, 'UniformOutput', false)); if currentFitness < bestFitness bestPosition = currentSolution; bestFitness = currentFitness; end if currentFitness > worstFitness worstPosition = currentSolution; worstFitness = currentFitness; end % 更新规则(此处简化处理) r1 = rand(size(currentSolution)); r2 = rand(size(currentSolution)); newSolution = currentSolution + r1.*(bestPosition-currentSolution) - r2.*(worstPosition-currentSolution); % 边界条件检查 newSolution(newSolution<lowerBound) = lowerBound(newSolution<lowerBound); newSolution(newSolution>upperBound) = upperBound(newSolution>upperBound); % 替换旧方案为新生成的最佳方案 if cell2mat(cellfun(fitnessFunction, {newSolution}, 'UniformOutput', false)) < currentFitness population(i,:) = newSolution; end end disp(['迭代次数:',num2str(iter), ', 当前最好适应度:', num2str(bestFitness)]); end end ``` 此段代码实现了基本框架下的改进Jaya算法,并可用于各种类型的机器学习模型调参过程之中。具体到FNN或者其他特定应用场景,则需根据实际情况修改`fitnessFunction`定义部分以便适配相应的目标函数计算逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值