基于灰狼算法优化的核极限学习机(KELM)分类算法

基于灰狼算法优化的核极限学习机(KELM)分类算法


摘要:本文利用灰狼算法对核极限学习机(KELM)进行优化,并用于分类

1.KELM理论基础

核极限学习机(Kernel Based Extreme Learning Machine,KELM)是基于极限学习机(Extreme Learning Machine,ELM)并结合核函数所提出的改进算法,KELM 能够在保留 ELM 优点的基础上提高模型的预测性能。

ELM 是一种单隐含层前馈神经网络,其学习目标函数F(x) 可用矩阵表示为:
F ( x ) = h ( x ) × β = H × β = L (9) F(x)=h(x)\times \beta=H\times\beta=L \tag{9} F(x)=h(x)×β=H×β=L(9)
式中: x x x 为输入向量, h ( x ) h(x) h(x) H H H 为隐层节点输出, β β β 为输出权重, L L L 为期望输出。

将网络训练变为线性系统求解的问题, β \beta β根据 β = H ∗ ⋅ L β=H * ·L β=HL 确定,其中, H ∗ H^* H H H H 的广义逆矩阵。为增强神经网络的稳定性,引入正则化系数 C C C 和单位矩阵 I I I,则输出权值的最小二乘解为
β = H T ( H H T + I c ) − 1 L (10) \beta = H^T(HH^T+\frac{I}{c})^{-1}L\tag{10} β=HT(HHT+cI)1L(10)
引入核函数到 ELM 中,核矩阵为:
Ω E L M = H H T = h ( x i ) h ( x j ) = K ( x i , x j ) (11) \Omega_{ELM}=HH^T=h(x_i)h(x_j)=K(x_i,x_j)\tag{11} ΩELM=HHT=h(xi)h(xj)=K(xi,xj)(11)
式中: x i x_i xi x j x_j xj 为试验输入向量,则可将式(9)表达为:
F ( x ) = [ K ( x , x 1 ) ; . . . ; K ( x , x n ) ] ( I C + Ω E L M ) − 1 L (12) F(x)=[K(x,x_1);...;K(x,x_n)](\frac{I}{C}+\Omega_{ELM})^{-1}L \tag{12} F(x)=[K(x,x1);...;K(x,xn)](CI+ΩELM)1L(12)
式中: ( x 1 , x 2 , … , x n ) (x_1 , x_2 , …, x_n ) (x1,x2,,xn) 为给定训练样本, n n n 为样本数量. K ( ) K() K()为核函数。

2.分类问题

本文对乳腺肿瘤数据进行分类。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本 。

3.基于灰狼算法优化的KELM

灰狼算法原理请参考:https://blog.csdn.net/u011835903/article/details/107716390

由前文可知,本文利用灰狼算法对正则化系数 C 和核函数参数 S 进行优化。适应度函数设计为训练集与测试集的错误率。
f i t n e s s = a r g m i n ( T r a i n E r r o r R a t e + T e s t E r r o r R a t e ) 。 fitness = argmin(TrainErrorRate + TestErrorRate)。 fitness=argmin(TrainErrorRate+TestErrorRate)

4.测试结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果可以看出,灰狼-KELM明显优于原始KELM算法

5.Matlab代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值