Error display:
NameError: name 'weights' is not defined
Root Cause: missing code :
# add this code
weights = logRegres.gradAscent(dataArr,labelMat)
Issue 2:
如果是矩阵会报错:
x and y must have same first dimension, but have shapes (60,) and (1, 60)
x = arange(-3.0, 3.0, 0.1),len(x) = [3-(-3)]/0.1 = 60
weights是矩阵的话,y = (-weights[0]-weights[1]*x)/weights[2],len(y) = 1
Modified Code as below:
# Plotting the logistic regression best-fit line and dataset.
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat, labelMat = loadDataSet()
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = np.arange(-3.0, 3.0, 0.1)
y = (-weights[0] - weights[1] * x) / weights[2]
y = y.reshape((60,1)) # add this code to fix this issue
ax.plot(x, y)
plt.title('BestFit')
plt.xlabel('X1'); plt.ylabel('X2')
plt.show()
Display:
import logRegres
import imp
imp.reload(logRegres)
weights = logRegres.gradAscent(dataArr,labelMat)
logRegres.plotBestFit(weights)