NameError: name ‘weights‘ is not defined

Error display:

NameError: name 'weights' is not defined

Root Cause: missing code :

# add this code 
weights = logRegres.gradAscent(dataArr,labelMat)
Issue 2: 

 

如果是矩阵会报错:
 x and y must have same first dimension, but have shapes (60,) and (1, 60)
 
 x = arange(-3.0, 3.0, 0.1),len(x) = [3-(-3)]/0.1 = 60 
 weights是矩阵的话,y = (-weights[0]-weights[1]*x)/weights[2],len(y) = 1

Modified Code as below:

# Plotting the logistic regression best-fit line and dataset.

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat, labelMat = loadDataSet()
    dataArr = np.array(dataMat)
    n = np.shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    y = y.reshape((60,1)) # add this code to fix this issue 
    ax.plot(x, y)
    plt.title('BestFit')
    plt.xlabel('X1'); plt.ylabel('X2')
    plt.show()

Display:

import logRegres
import imp
imp.reload(logRegres)
weights = logRegres.gradAscent(dataArr,labelMat)
logRegres.plotBestFit(weights)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值