十分钟学会python迭代器和生成器

迭代器

在Python中,迭代器是遵循迭代协议的对象。使用iter()从任何序列对象中得到迭代器(如list, tuple, dictionary, set等)。另一种形式的输入迭代器是generator(生成器)。

 

python中,任意对象,只要定义了__next__方法,它就是一个迭代器。因此,python中的容器如列表、元组、字典、集合、字符串都可以被称作迭代器。

 

我们在使用for语句的时候,for 语句会调用容器对象中的 iter()。该函数返回一个定义了 __next__() 方法的迭代器对象,该方法将逐一访问容器中的元素。当元素用尽时,__next__() 将引发 StopIteration 异常来通知终止 for 循环。你可以使用 next() 内置函数来调用 __next__() 方法;这个例子显示了它的运作方式:

>>> s = 'abc'>>> it = iter(s)>>> it<iterator object at 0x00A1DB50>>>> next(it)'a'>>> next(it)'b'>>> next(it)'c'>>> next(it)Traceback (most recent call last):  File "<stdin>", line 1, in <module>next(it)StopIteration
所以说迭代就是从迭代器中取元素的过程。

比如我们用for循环从列表[中取元素,这种遍历过程就被称作迭代。

创建一个迭代器

把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。

类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。

__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。

__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。

StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

class MyNumbers:

  def __iter__(self):    self.a = 1    return self
  def __next__(self):    if self.a <= 20:      x = self.a      self.a += 1      return x    else:      raise StopIteration
myclass = MyNumbers()myiter = iter(myclass)
print(next(myiter))#1print(next(myiter))#2print(next(myiter))#3 ...到20停止

 

生成器

通过列表生成式,我们可以直接创建一个列表。
但是,受到内存限制,列表容量肯定是有限的。
而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?
这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。

 

使用了 yield 的函数被称为生成器(generator)。调用一个生成器函数,返回的是一个迭代器对象。但是你只能对其迭代一次。这是因为它们并没有把所有的值存在内存中,而是在运行时生成值。

 

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。以下实例使用 yield 实现斐波那契数列::

import sys
def fibonacci(n): # 生成器函数 - 斐波那契    a, b, counter = 0, 1, 0    while True:        if (counter > n):             return        yield a        a, b = b, a + b        counter += 1f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:    try:        print (next(f), end=" ")    except StopIteration:        sys.exit()

 

生成器表达式

某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。这种表达式被设计用于生成器将立即被外层函数所使用的情况。生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。

例如:

>>> sum(i*i for i in range(10))                 # sum of squares285
>>> xvec = [10, 20, 30]>>> yvec = [7, 5, 3]>>> sum(x*y for x,y in zip(xvec, yvec))         # dot product260
>>> from math import pi, sin>>> sine_table = {x: sin(x*pi/180) for x in range(0, 91)}
>>> unique_words = set(word  for line in page  for word in line.split())
>>> valedictorian = max((student.gpa, student.name) for student in graduates)
>>> data = 'golf'>>> list(data[i] for i in range(len(data)-1, -1, -1))['f', 'l', 'o', 'g']

-END-

 

创作不易,关注公众号是对作者最好的鼓励

在公众号后台回复“开发教程”获取最新开发教程

发布了2 篇原创文章 · 获赞 0 · 访问量 74
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览