用的卷积代替的卷积,以减小参数和计算量:
用和的卷积代替的卷积,从而减小了参数和计算量:
原始inception结构图如下:
使用2层卷积层替代的卷积层,改进后inception结构图如下:
对于卷积,使用和的卷积层代替,改进后inception结构图如下:
使用和的卷积层代替的卷积层,改进后inception结构图如下:
完整网络结构为:
由表中可以看出,inception网络用于在图像(feature map)尺寸较小的时候,且figure5,figure6,figure7是依次使用的,他们适用于不同尺寸的图像.
tensorflow代码如下:
def inception_v3(inputs,
dropout_keep_prob=0.8,
num_classes=1000,
is_training=True,
restore_logits=True,
scope=''):
"""Latest Inception from http://arxiv.org/abs/1512.00567.
"Rethinking the Inception Architecture for Computer Vision"
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
Zbigniew Wojna
Args:
inputs: a tensor of size [batch_size, height, width, channels].
dropout_keep_prob: dropout keep_prob.
num_classes: number of predicted classes.
is_training: whether is training or not.
restore_logits: whether or not the logits layers should be restored.
Useful for fine-tuning a model with different num_classes.
scope: Optional scope for name_scope.
Returns:
a list containing 'logits', 'aux_logits' Tensors.
"""
# end_points will collect relevant activations for external use, for example
# summaries or losses.
end_points = {}
with tf.name_scope(scope, 'inception_v3', [inputs]):
with scopes.arg_scope([ops.conv2d, ops.fc, ops.batch_norm, ops.dropout],
is_training=is_training):
with scopes.arg_scope([ops.conv2d, ops.max_pool, ops.avg_pool],
stride=1, padding='VALID'):
# 299 x 299 x 3
end_points['conv0'] = ops.conv2d(inputs, 32, [3, 3], stride=2,
scope='conv0')
# 149 x 149 x 32
end_points['conv1'] = ops.conv2d(end_points['conv0'], 32, [3, 3],
scope='conv1')
# 147 x 147 x 32
end_points['conv2'] = ops.conv2d(end_points['conv1'], 64, [3, 3],
padding='SAME', scope='conv2')
# 147 x 147 x 64
end_points['pool1'] = ops.max_pool(end_points['conv2'], [3, 3],
stride=2, scope='pool1')
# 73 x 73 x 64
end_points['conv3'] = ops.conv2d(end_points['pool1'], 80, [1, 1],
scope='conv3')
# 73 x 73 x 80.
end_points['conv4'] = ops.conv2d(end_points['conv3'], 192, [3, 3],
scope='conv4')
# 71 x 71 x 192.
end_points['pool2'] = ops.max_pool(end_points['conv4'], [3, 3],
stride=2, scope='pool2')
# 35 x 35 x 192.
net = end_points['pool2']
# Inception blocks
with scopes.arg_scope([ops.conv2d, ops.max_pool, ops.avg_pool],
stride=1, padding='SAME'):
# mixed: 35 x 35 x 256.
with tf.variable_scope('mixed_35x35x256a'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 64, [1, 1])
with tf.variable_scope('branch5x5'):
branch5x5 = ops.conv2d(net, 48, [1, 1])
branch5x5 = ops.conv2d(branch5x5, 64, [5, 5])
with tf.variable_scope('branch3x3dbl'):
branch3x3dbl = ops.conv2d(net, 64, [1, 1])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 32, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch5x5, branch3x3dbl, branch_pool])
end_points['mixed_35x35x256a'] = net
# mixed_1: 35 x 35 x 288.
with tf.variable_scope('mixed_35x35x288a'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 64, [1, 1])
with tf.variable_scope('branch5x5'):
branch5x5 = ops.conv2d(net, 48, [1, 1])
branch5x5 = ops.conv2d(branch5x5, 64, [5, 5])
with tf.variable_scope('branch3x3dbl'):
branch3x3dbl = ops.conv2d(net, 64, [1, 1])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 64, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch5x5, branch3x3dbl, branch_pool])
end_points['mixed_35x35x288a'] = net
# mixed_2: 35 x 35 x 288.
with tf.variable_scope('mixed_35x35x288b'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 64, [1, 1])
with tf.variable_scope('branch5x5'):
branch5x5 = ops.conv2d(net, 48, [1, 1])
branch5x5 = ops.conv2d(branch5x5, 64, [5, 5])
with tf.variable_scope('branch3x3dbl'):
branch3x3dbl = ops.conv2d(net, 64, [1, 1])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 64, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch5x5, branch3x3dbl, branch_pool])
end_points['mixed_35x35x288b'] = net
# mixed_3: 17 x 17 x 768.
with tf.variable_scope('mixed_17x17x768a'):
with tf.variable_scope('branch3x3'):
branch3x3 = ops.conv2d(net, 384, [3, 3], stride=2, padding='VALID')
with tf.variable_scope('branch3x3dbl'):
branch3x3dbl = ops.conv2d(net, 64, [1, 1])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3])
branch3x3dbl = ops.conv2d(branch3x3dbl, 96, [3, 3],
stride=2, padding='VALID')
with tf.variable_scope('branch_pool'):
branch_pool = ops.max_pool(net, [3, 3], stride=2, padding='VALID')
net = tf.concat(axis=3, values=[branch3x3, branch3x3dbl, branch_pool])
end_points['mixed_17x17x768a'] = net
# mixed4: 17 x 17 x 768.
with tf.variable_scope('mixed_17x17x768b'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 192, [1, 1])
with tf.variable_scope('branch7x7'):
branch7x7 = ops.conv2d(net, 128, [1, 1])
branch7x7 = ops.conv2d(branch7x7, 128, [1, 7])
branch7x7 = ops.conv2d(branch7x7, 192, [7, 1])
with tf.variable_scope('branch7x7dbl'):
branch7x7dbl = ops.conv2d(net, 128, [1, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 128, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 128, [1, 7])
branch7x7dbl = ops.conv2d(branch7x7dbl, 128, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [1, 7])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
end_points['mixed_17x17x768b'] = net
# mixed_5: 17 x 17 x 768.
with tf.variable_scope('mixed_17x17x768c'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 192, [1, 1])
with tf.variable_scope('branch7x7'):
branch7x7 = ops.conv2d(net, 160, [1, 1])
branch7x7 = ops.conv2d(branch7x7, 160, [1, 7])
branch7x7 = ops.conv2d(branch7x7, 192, [7, 1])
with tf.variable_scope('branch7x7dbl'):
branch7x7dbl = ops.conv2d(net, 160, [1, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 160, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 160, [1, 7])
branch7x7dbl = ops.conv2d(branch7x7dbl, 160, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [1, 7])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
end_points['mixed_17x17x768c'] = net
# mixed_6: 17 x 17 x 768.
with tf.variable_scope('mixed_17x17x768d'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 192, [1, 1])
with tf.variable_scope('branch7x7'):
branch7x7 = ops.conv2d(net, 160, [1, 1])
branch7x7 = ops.conv2d(branch7x7, 160, [1, 7])
branch7x7 = ops.conv2d(branch7x7, 192, [7, 1])
with tf.variable_scope('branch7x7dbl'):
branch7x7dbl = ops.conv2d(net, 160, [1, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 160, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 160, [1, 7])
branch7x7dbl = ops.conv2d(branch7x7dbl, 160, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [1, 7])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
end_points['mixed_17x17x768d'] = net
# mixed_7: 17 x 17 x 768.
with tf.variable_scope('mixed_17x17x768e'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 192, [1, 1])
with tf.variable_scope('branch7x7'):
branch7x7 = ops.conv2d(net, 192, [1, 1])
branch7x7 = ops.conv2d(branch7x7, 192, [1, 7])
branch7x7 = ops.conv2d(branch7x7, 192, [7, 1])
with tf.variable_scope('branch7x7dbl'):
branch7x7dbl = ops.conv2d(net, 192, [1, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [1, 7])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [7, 1])
branch7x7dbl = ops.conv2d(branch7x7dbl, 192, [1, 7])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch7x7, branch7x7dbl, branch_pool])
end_points['mixed_17x17x768e'] = net
# Auxiliary Head logits
aux_logits = tf.identity(end_points['mixed_17x17x768e'])
with tf.variable_scope('aux_logits'):
aux_logits = ops.avg_pool(aux_logits, [5, 5], stride=3,
padding='VALID')
aux_logits = ops.conv2d(aux_logits, 128, [1, 1], scope='proj')
# Shape of feature map before the final layer.
shape = aux_logits.get_shape()
aux_logits = ops.conv2d(aux_logits, 768, shape[1:3], stddev=0.01,
padding='VALID')
aux_logits = ops.flatten(aux_logits)
aux_logits = ops.fc(aux_logits, num_classes, activation=None,
stddev=0.001, restore=restore_logits)
end_points['aux_logits'] = aux_logits
# mixed_8: 8 x 8 x 1280.
# Note that the scope below is not changed to not void previous
# checkpoints.
# (TODO) Fix the scope when appropriate.
with tf.variable_scope('mixed_17x17x1280a'):
with tf.variable_scope('branch3x3'):
branch3x3 = ops.conv2d(net, 192, [1, 1])
branch3x3 = ops.conv2d(branch3x3, 320, [3, 3], stride=2,
padding='VALID')
with tf.variable_scope('branch7x7x3'):
branch7x7x3 = ops.conv2d(net, 192, [1, 1])
branch7x7x3 = ops.conv2d(branch7x7x3, 192, [1, 7])
branch7x7x3 = ops.conv2d(branch7x7x3, 192, [7, 1])
branch7x7x3 = ops.conv2d(branch7x7x3, 192, [3, 3],
stride=2, padding='VALID')
with tf.variable_scope('branch_pool'):
branch_pool = ops.max_pool(net, [3, 3], stride=2, padding='VALID')
net = tf.concat(axis=3, values=[branch3x3, branch7x7x3, branch_pool])
end_points['mixed_17x17x1280a'] = net
# mixed_9: 8 x 8 x 2048.
with tf.variable_scope('mixed_8x8x2048a'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 320, [1, 1])
with tf.variable_scope('branch3x3'):
branch3x3 = ops.conv2d(net, 384, [1, 1])
branch3x3 = tf.concat(axis=3, values=[ops.conv2d(branch3x3, 384, [1, 3]),
ops.conv2d(branch3x3, 384, [3, 1])])
with tf.variable_scope('branch3x3dbl'):
branch3x3dbl = ops.conv2d(net, 448, [1, 1])
branch3x3dbl = ops.conv2d(branch3x3dbl, 384, [3, 3])
branch3x3dbl = tf.concat(axis=3, values=[ops.conv2d(branch3x3dbl, 384, [1, 3]),
ops.conv2d(branch3x3dbl, 384, [3, 1])])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch3x3, branch3x3dbl, branch_pool])
end_points['mixed_8x8x2048a'] = net
# mixed_10: 8 x 8 x 2048.
with tf.variable_scope('mixed_8x8x2048b'):
with tf.variable_scope('branch1x1'):
branch1x1 = ops.conv2d(net, 320, [1, 1])
with tf.variable_scope('branch3x3'):
branch3x3 = ops.conv2d(net, 384, [1, 1])
branch3x3 = tf.concat(axis=3, values=[ops.conv2d(branch3x3, 384, [1, 3]),
ops.conv2d(branch3x3, 384, [3, 1])])
with tf.variable_scope('branch3x3dbl'):
branch3x3dbl = ops.conv2d(net, 448, [1, 1])
branch3x3dbl = ops.conv2d(branch3x3dbl, 384, [3, 3])
branch3x3dbl = tf.concat(axis=3, values=[ops.conv2d(branch3x3dbl, 384, [1, 3]),
ops.conv2d(branch3x3dbl, 384, [3, 1])])
with tf.variable_scope('branch_pool'):
branch_pool = ops.avg_pool(net, [3, 3])
branch_pool = ops.conv2d(branch_pool, 192, [1, 1])
net = tf.concat(axis=3, values=[branch1x1, branch3x3, branch3x3dbl, branch_pool])
end_points['mixed_8x8x2048b'] = net
# Final pooling and prediction
with tf.variable_scope('logits'):
shape = net.get_shape()
net = ops.avg_pool(net, shape[1:3], padding='VALID', scope='pool')
# 1 x 1 x 2048
net = ops.dropout(net, dropout_keep_prob, scope='dropout')
net = ops.flatten(net, scope='flatten')
# 2048
logits = ops.fc(net, num_classes, activation=None, scope='logits',
restore=restore_logits)
# 1000
end_points['logits'] = logits
end_points['predictions'] = tf.nn.softmax(logits, name='predictions')
return logits, end_points
完整的代码见github:
https://github.com/tensorflow/models/tree/master/inception/inception