Fast Image Processing with Fully-Convolutional Networks

主要应用,

1.滤波,如L0 平滑滤波;

2.对比度增强

3.风格转换

4.雾天图像清晰化

5.铅笔化(pencil drawing)
这里写图片描述

网络结构

网络为9层空洞卷积(dilation convolution),每层卷积核大小为 3×3 ,stride=1. 1-7层dilation 值依次递增,分别为1,2,4,8,16,32,64,8,9层dilation rate为1.第s层的feature maps计算为:

这里写图片描述

Ls,Ls1 分别为第s,s-1层的feature maps, Ksi,j,bsi 为卷积核权重, rs 表示空洞卷积操作,dilation 值为 rs .空洞卷积的目的是扩大卷积范围,例如对于图像坐标点x,卷积值为所有满足 a+rsb=x 的所有 Ls1j(a),ksi,j(b) 点的乘积的均值,

这里写图片描述

这样对于 3×3 的卷积核,当前特征点的不仅仅与其邻域范围 3×3 的特征点有关,还与dilation范围内的特征点有关.空洞卷积原理可参考:http://blog.csdn.net/u011961856/article/details/77141761 .

每个卷积层激活函数为lrelu. 采用自适应batch normalization,公式为

这里写图片描述
λs,μs 为需要学习的参数, BN(x) 为batch normalization.

网络代码实现如下:

def build(input):#stride is 1,rate is dilation rate
    net=slim.conv2d(input,24,[3,3],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv1')
    net=slim.conv2d(net,24,[3,3],rate=2,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv2')
    net=slim.conv2d(net,24,[3,3],rate=4,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv3')
    net=slim.conv2d(net,24,[3,3],rate=8,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv4')
    net=slim.conv2d(net,24,[3,3],rate=16,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv5')
    net=slim.conv2d(net,24,[3,3],rate=32,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv6')
    net=slim.conv2d(net,24,[3,3],rate=64,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv7')
#    net=slim.conv2d(net,24,[3,3],rate=128,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv8')
    net=slim.conv2d(net,24,[3,3],rate=1,activation_fn=lrelu,normalizer_fn=nm,weights_initializer=identity_initializer(),scope='g_conv9')
    net=slim.conv2d(net,3,[1,1],rate=1,activation_fn=None,scope='g_conv_last')
    return net

输出与输入大小相同,损失函数采用L2 loss:

这里写图片描述

训练:

输入图像大小不固定,输出与输入大小相同.为了使模型能够处理不同分辨率的图像,在训练的时候随机对输入图像resize为不同的大小.

梯度更新采用Adam,学习率lr=0.0001.

模型大小为1.1M.

这里写图片描述

测试

将demo.py中is_training设置为False.运行python demo.py

采用opencv显示图像,可以在代码后面添加行:

cv2.imshow('output',np.uint8(output_image[0,:,:,:]))
cv2.waitKey(0)

github代码:https://github.com/CQFIO/FastImageProcessing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值