caffe 模型转tensorflow

本文介绍了如何将Caffe模型转换为TensorFlow,包括使用caffe-tensorflow的convert.py脚本,处理转换过程中的错误,如更新prototxt和model到最新版本,以及解决不支持的层类型和多top节点问题。转换完成后,通过加载Caffe模型参数,可以对TensorFlow模型进行fine-tuning并保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载模型转换代码:

git clone https://github.com/ethereon/caffe-tensorflow

caffe-tensorflow模型转换文件为convert.py,可以将caffe的模型定义文件.prototxt和训练好的模型分别转换为tensorflow类,和tensorflow模型文件.在example文件夹下提供了examples/minist和examples/imagenet两个转换示例.

以手写字体为例,模型为lenet,examples/minist目录下提供了lenet.prototxt和训练好的caffe模lenet_iter_10000.caffemodel,caffe转换为tensorflow命令为:

python convert.py --def_path examples/mnist/lenet.prototxt --caffemodel examples/mnist/lenet_iter_10000.caffemodel --data-output-path lenet.npy --code-output-path lenet.py

运行命令后报错:

TypeError: Descriptors should not be created directly, but only retrieved from their parent.

Process finished with exit code 1

这是因为找不到caffe安装目录,解决方法是kaffe/caffe/resolver.py的第12行添加caffe安装目录:

import sys
caffe_root = '/home/qinghua/program/caffe'
sys.path.insert(0, caffe_root + '/python')
import caffe

这里写图片描述

转换后得到lenet网络结构文件lenet.py:

from kaffe.tensorflow import Network

class LeNet(Network):
    def setup(self):
        (self.feed('data')
             .conv(5, 5, 20, 1, 1, padding='VALID', relu=False, name='conv1')
             .max_pool(2, 2, 2, 2, name='pool1')
             .conv(5, 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值