tensorflow 多gpu训练

本文介绍了如何在TensorFlow中利用多个GPU进行模型训练,通过调整输入数据的batch_size和利用tf.device()指定GPU,可以显著减少训练时间。参考代码来源于OpenSeq2Seq项目,模型定义在model_base.py文件中,详细展示了如何为每个GPU分配输入数据并定义损失函数及更新策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当使用多个gpu训练时,输入数据为batch_size*num_gpu,这样模型训练时间可以大大较小.

tensorflow中使用制定gpu可以通过tf.device()实现.例如我想使用0号显卡:

gpu_ind=0
with tf.device("/gpu:{}".format(gpu_ind))

下面介绍一下多gpu模型训练.代码参考自OpenSeq2Seq:https://github.com/NVIDIA/OpenSeq2Seq

关于多gpu模型定义文件为OpenSeq2Seq/model/model_base.py

首先将定义输入数据,并拆分为多个gpu的输入:

# placeholders for feeding data
self.x = tf.placeholder(tf.int32, [self.global_batch_size, None])
self.x_length = tf.placeholder(tf.int32, [self.global_batch_size])
self.y = tf.placeholder(tf.int32, [self.global_batch_size, None])
self.y_length = tf.placeholder(tf.int32, [self.global_batch_size])

# below we follow data parallelism for multi-GPU training
# actual per GPU data feeds
xs = tf.split(value=self.x, num_or_size_splits=num_gpus, axis=0)
x_lengths = tf.split(value=self.x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值