DCGAN代码分析

本文深入分析了DCGAN(深度卷积生成对抗网络)的生成网络和判别网络。生成网络接收100维噪声向量z和10维类别向量y,输出生成的手写字体图像。而判别网络则负责区分输入图像是否为真实图像。代码展示详细说明了网络结构和功能。
摘要由CSDN通过智能技术生成

生成网络

生成网络输入为噪声向量z,和输出类别向量y,输出为生成图像.

以手写字体图像为例,z为100维的向量,由于手写字体分为10类,因此输出类别向量y为10维的向量,对应的类别的索引值为1,其他值为0.

代码如下:

def generator(self, z, y=None):
  with tf.variable_scope("generator") as scope:
    if not self.y_dim:
      s_h, s_w = self.output_height, self.output_width
      s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
      s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
      s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
      s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)

      # project `z` and reshape
      self.z_, self.h0_w, self.h0_b = linear(
          z, self.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True)

      self.h0 = tf.reshape(
          self.z_, [-1, s_h16, s_w16, self.gf_dim * 8])
      h0 = tf.nn.relu(self.g_bn0(self.h0))

      self.h1, self.h1_w, self.h1_b = deconv2d(
          h0, [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='g_h1', with_w=Tru
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值