边缘检测(梯度和拉普拉斯比较)

边缘检测在图像处理中至关重要,通过查找梯度最大值和拉普拉斯零穿越来定位边缘。本文介绍了梯度算子(如Sobel、Prewitt、Robert)和拉普拉斯算子在边缘检测中的应用,提供了MATLAB及CCS的调试代码示例。
摘要由CSDN通过智能技术生成

1.概述

   边缘检测是图像处理计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。 这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

     图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

 

1.1 梯度算子 

梯度对应一阶导数,对于一个连续图像函数f(x,y),它在点f(x,y)处的梯度是一个矢量,定义为

边缘检测(梯度和拉普拉斯比较)

式中 分别为沿x方向和y方向的梯度。梯度的幅度| |和方向角分别为


边缘检测(梯度和拉普拉斯比较)

由上式可知,梯度的数值就是f(x,y)在其最大变化率方向上的单位距离所增加的量。对于数字图像而言,梯度是由差分代替微分来实现的,所以上式可以写为

边缘检测(梯度和拉普拉斯比较)
式中各像素的位置如图6-6b所示这种梯度法又称为水平垂直差分法。另一种梯度法如图a所示,是交叉地进行差分计算,称为罗伯特梯度法,表示为边缘检测(梯度和拉普拉斯比较)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值