Linux kernel -- Uevent发送(热插拔)事件到用户空间

Uevent是一种在内核空间和用户空间之间通信的机制,主要用于热插拔事件(hotplug)。

uevent事件

根据include/linux/kobject.h中的定义,kobject对应的动作可分为以下几种:

enum kobject_action {
    KOBJ_ADD,
    KOBJ_REMOVE,
    KOBJ_CHANGE,
    KOBJ_MOVE,
    KOBJ_ONLINE,
    KOBJ_OFFLINE,
    KOBJ_MAX
};

这些动作对应的事件相应有以下几种:

static const char *kobject_actions[] = {
    [KOBJ_ADD] =        "add",
    [KOBJ_REMOVE] =     "remove",
    [KOBJ_CHANGE] =     "change",
    [KOBJ_MOVE] =       "move",
    [KOBJ_ONLINE] =     "online",
    [KOBJ_OFFLINE] =    "offline",
};

说明:本文所有的源代码均取自内核2.6.32。

uevent环境变量

Uevent事件具体以环境变量(即字符串)的形式发送到用户空间。

struct kobj_uevent_env {
    char *envp[UEVENT_NUM_ENVP]; /*环境变量指针数组*/
    int envp_idx; /*数组下标*/
    char buf[UEVENT_BUFFER_SIZE];
    int buflen;
};

发送事件方法

在内核中通过kobject_uevent_env函数将事件发送到用户空间,但是实际上发送事件的动作由调用函数kobject_uevent_env实现。

/**
 * kobject_uevent - notify userspace by ending an uevent
 *
 * @action: action that is happening
 * @kobj: struct kobject that the action is happening to
 *
 * Returns 0 if kobject_uevent() is completed with success or the
 * corresponding error when it fails.
 */
int kobject_uevent(struct kobject *kobj, enum kobject_action action)
{
    return kobject_uevent_env(kobj, action, NULL);
}
EXPORT_SYMBOL_GPL(kobject_uevent);

kobject_uevent_env函数主要做了两方面的工作:

  1. 获取整理了与即将发送的事件相关的环境变量,如ACTION、DEVPATH和SUBSYSTE等。
  2. 发送事件到用户空间。
/**
 * kobject_uevent_env - send an uevent with environmental data
 *
 * @action: action that is happening
 * @kobj: struct kobject that the action is happening to
 * @envp_ext: pointer to environmental data
 *
 * Returns 0 if kobject_uevent() is completed with success or the
 * corresponding error when it fails.
 */
int kobject_uevent_env(struct kobject *kobj, enum kobject_action action,
               char *envp_ext[])
{
    struct kobj_uevent_env *env;
    const char *action_string = kobject_actions[action];
    const char *devpath = NULL;
    const char *subsystem;
    struct kobject *top_kobj;
    struct kset *kset;
    struct kset_uevent_ops *uevent_ops;
    u64 seq;
    int i = 0;
    int retval = 0;

    pr_debug("kobject: '%s' (%p): %s\n",
         kobject_name(kobj), kobj, __func__);

    /* search the kset we belong to */
    top_kobj = kobj;
    while (!top_kobj->kset && top_kobj->
<think>好的,我现在需要详细解释Pandas中merge、join、appendconcat这四个函数的用法区别。用户已经提供了相关的引用资料,我需要先仔细理解这些引用内容,然后整理出一个清晰的回答结构。 首先,我应该逐个分析每个函数的基本用法,然后比较它们的异同。根据引用,concat主要用于沿轴(行或列)拼接多个数据集,可以处理多个DataFrame,并且有内外连接的区别。mergejoin则是基于键的合并,类似于SQL中的JOIN操作,但具体参数使用方式有所不同。append是向DataFrame追加行,属于concat的简化版。 接下来,我需要确保每个函数的说明都包含关键参数示例,比如concat的axis参数,merge的on、how参数,join的on参数等。同时,要区分它们的适用场景,比如merge适合列对齐的合并,join基于索引合并,concat处理多对象拼接,append添加行。 然后,对比部分需要明确列出它们的主要区别,比如处理对象数量、键的类型、拼接方向等。这样用户能一目了然。示例部分要简单明了,展示每个函数的典型用法,比如concat合并两个DataFrame,merge根据共同列合并,join基于索引,append添加新行。 还需要检查引用是否正确对应到每个知识点,比如引用[1]提到concat可以合并多个数据集,引用[3]展示concat的行列拼接示例,引用[5]提到merge的参数等。确保每个引用在合适的位置被提及,以增强可信度。 最后,生成的相关问题要围绕用户可能感兴趣的扩展内容,比如性能差异、处理重复数据的方法、替代函数等,帮助用户深入理解。 在整理过程中,需要注意中文表达的流畅性技术术语的准确性,避免错误。同时,按照用户要求,数学公式使用$...$格式,独立公式用$$...$$,但在这个问题中可能涉及较少数学内容,所以可能不需要太多公式。确保LaTeX语法正确,比如如果有用到公式的话。 现在,把这些思路整合成一个结构清晰、分点明确、示例恰当的回答,并附上相关问题。确保每个部分都覆盖了用户的需求,并且引用标注正确自然。</think>### Pandas中merge、join、appendconcat的区别及用法详解 #### 1. **`concat()`** - **功能**:沿行或列方向拼接多个数据集(DataFrame或Series),支持内外连接(`join='outer'`或`'inner'`)。 - **核心参数**: - `axis=0`(默认):纵向拼接(增加行);`axis=1`:横向拼接(增加列)。 - `ignore_index=True`:重置索引。 - `keys=[...]`:添加层级索引以区分来源。 - **示例**: ```python import pandas as pd # 纵向拼接两个DataFrame result = pd.concat([df1, df2], axis=0) # 横向拼接(列对齐) result = pd.concat([df1, df2], axis=1) ``` **适用场景**:合并结构相似的数据(如多个季度销售表)[^3]。 --- #### 2. **`merge()`** - **功能**:基于列或索引的键值合并数据,类似SQL的`JOIN`操作。 - **核心参数**: - `on='列名'`:指定合并的键。 - `how='inner'`(默认):支持`left`/`right`/`outer`。 - `left_on`/`right_on`:左右表不同的键名。 - `suffixes=('_x', '_y')`:处理重复列名。 - **示例**: ```python # 根据共同列合并 merged_df = pd.merge(df1, df2, on='id', how='left') # 不同键名合并 merged_df = pd.merge(df1, df2, left_on='id', right_on='user_id') ``` **适用场景**:关联不同数据源中的表(如订单表用户表)[^5]。 --- #### 3. **`join()`** - **功能**:基于索引的合并(默认左连接),也可指定列作为键。 - **核心参数**: - `on=None`(默认):使用索引合并。 - `how='left'`(默认):支持`right`/`inner`/`outer`。 - `lsuffix`/`rsuffix`:处理重复列名。 - **示例**: ```python # 基于索引合并 joined_df = df1.join(df2, how='inner') # 基于列合并(需设置索引) joined_df = df1.set_index('id').join(df2.set_index('user_id')) ``` **适用场景**:快速合并索引对齐的数据(如时间序列)[^4]。 --- #### 4. **`append()`** - **功能**:向DataFrame尾部追加行(`concat(axis=0)`的简化版)。 - **注意**:已被弃用,建议改用`pd.concat()`。 - **示例**: ```python # 追加单行数据 new_row = pd.DataFrame({'A': [1], 'B': [2]}) appended_df = df1.append(new_row, ignore_index=True) ``` **适用场景**:动态添加少量数据(如日志记录)[^2]。 --- ### 对比总结 | 方法 | 处理对象数量 | 键类型 | 拼接方向 | 主要用途 | |---------|--------------|----------------|----------|------------------------------| | `concat`| 多个 | 索引或列对齐 | 行/列 | 结构相似数据的批量合并[^1] | | `merge` | 两个 | 列或索引 | 列扩展 | 基于键的关联分析 | | `join` | 两个 | 索引或列 | 列扩展 | 索引对齐的快速合并[^4] | | `append`| 单个或两个 | 无(直接追加) | 行扩展 | 简化版行追加(已弃用)[^2] | --- ### 示例对比 - **`concat`横向拼接**: ```python pd.concat([df1, df2], axis=1) # 列合并,索引需对齐 ``` - **`merge`关联不同列名**: ```python pd.merge(df1, df2, left_on='id', right_on='user_id') ``` - **`join`基于索引**: ```python df1.join(df2.set_index('user_id'), on='id') ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值