Mala

Metropolis-adjusted Langevin algorithm

Mala算法/Langevin Monte Carlo (LMC)v by wikipedia

Algorithm
1.Initialization:set X 0 = x 0 X_0=x_0 X0=x0 (and recursively define an app X k X_k Xk to the true solution X ( k τ ) X(k\tau) X(kτ))
2. (proposal dis)the transition probability density
在这里插入图片描述
Note that X k + 1 X_{k+1} Xk+1 is normally distributed with mean X k + τ ∇ log ⁡ π ( X k ) X_{k}+\tau \nabla \log \pi (X_{k}) Xk+τlogπ(Xk) and covariance equal to 2 τ 2\tau 2τ times the d × d d\times d d×d identity matrix.在这里插入图片描述
3. This proposal is accepted or rejected according to the Metropolis–Hastings algorithm: 在这里插入图片描述

注意:

  1. Compared to naive Metropolis–Hastings, MALA has the advantage that it usually proposes moves into regions of higher π \pi π probability, which are then more likely to be accepted.
  2. On the other hand, when π \pi π is strongly anisotropic (i.e. it varies much more quickly in some directions than others), it is necessary to take 0 < τ ≪ 1 0<\tau \ll 1 0<τ1 in order to properly capture the Langevin dynamics;
    the use of a positive-definite preconditioning matrix A ∈ R d × d A\in \mathbb {R} ^{d\times d} ARd×d can help to alleviate this problem, by generating proposals according to
    X ~ k + 1 : = X k + τ A ∇ log ⁡ π ( X k ) + 2 τ A ξ k \tilde {X}_{k+1}:=X_{k}+\tau A\nabla \log \pi (X_{k})+ \sqrt {2\tau A} \xi _{k} X~k+1:=Xk+τAlogπ(Xk)+2τA ξk

操作guide:
In practical applications, the optimal acceptance rate for this algorithm is 0.574 0.574 0.574.

### MALA 地面穿透雷达(GPR)数据格式说明 MALA 地面穿透雷达(Ground Penetrating Radar, GPR)是一种广泛应用于地质勘探、土木工程和其他领域的重要工具。其数据存储通常采用特定的文件格式,以便于后续分析和处理。 #### 数据文件结构 MALA 雷达设备在采集数据时会生成多种类型的文件,其中最常见的包括 `.cor` 文件[^1]。`.cor` 文件是一个二进制文件,主要用于保存测量过程中记录的空间坐标信息以及与之关联的时间序列信号。这些文件对于后期数据分析至关重要,尤其是在重新校准或验证原始扫描结果时。 除了 `.cor` 文件外,其他可能涉及的数据文件还包括但不限于: - **ASCII 文本文件**: 这些文件可以用来描述附加参数设置或者提供简单的数值列表形式的结果展示。 - **图像导出文件**: 如 BMP 或 TIFF 图像用于直观显示反射波形图谱。 #### 技术细节解析 具体到内部结构上,MALA 的 .cor 文件包含了以下几个主要部分: 1. **Header Section(头部区域)** 此部分内容定义了整个数据集的基础属性比如采样频率(Sampling Frequency),天线中心频率(Antenna Center Frequency)等元数据项. 2. **Data Records(数据记录区)** 实际探测所得回声强度随时间变化曲线被编码存于此处. 3. **Auxiliary Information(辅助信息区)** 可能还会有地理位置标记(GPS coordinates),环境条件备注之类的补充资料一同打包进去便于综合考量现场状况影响因素. 上述各组成部分共同构成了完整的MALA GPR数据体系框架[^4]. #### 使用Python进行初步探索的例子 下面给出一段利用 NumPy 和 Matplotlib 库加载并可视化简单版COR文件内容的小例子: ```python import numpy as np import matplotlib.pyplot as plt def read_cor_file(filename): """Reads a COR file into memory.""" with open(filename, 'rb') as f: header_size = int.from_bytes(f.read(4), byteorder='little') _ = f.read(header_size - 4) # Skip over the rest of the header num_traces = int.from_bytes(f.read(4), byteorder='little') samples_per_trace = int.from_bytes(f.read(4), byteorder='little') traces = [] for _ in range(num_traces): trace_data = np.frombuffer(f.read(samples_per_trace * 2), dtype=np.int16) traces.append(trace_data) return np.array(traces).T if __name__ == "__main__": cor_filename = "example.cor" data_matrix = read_cor_file(cor_filename) plt.figure(figsize=(8, 6)) plt.imshow(data_matrix, aspect='auto', cmap='gray') plt.colorbar() plt.title('Example Visualization of MALA GPR Data') plt.xlabel('Trace Number') plt.ylabel('Sample Index') plt.show() ``` 此脚本能帮助研究人员快速获取关于地下结构的一些基本印象[^2]. ### 结论 综上所述,理解 MALA GPR 的数据格式不仅有助于提高工作效率还能加深我们对该技术原理的认识程度。通过合理运用编程手段我们可以更高效地挖掘隐藏在其背后的价值所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值