【2023.07.15】生成模型(三)Score-based Generative Models

1. main contribution

(来自Score-based Generative Model的原文)

1)提供了一个统一SMLD(denoising score matching with langevin dynamics)和DDPM的框架。

2)提供了两个针对求解reverse-time的SDE求解器:一个求解器将数值SDE求解器与score based MCMC方法相结合,另一个求解器主要基于probability flow ode。

 Understanding Diffusion Models A Unified Perspective 部分的推导并不太合理,以下内容只包含了作者对Score-based Generative Models的一些看法。

2. Score-based Generative Models

1)采样过程使用了Langevin dynamicsx_{i+1}\leftarrow x_i+c\nabla logp(x_i)+\sqrt{2c}\epsilon

 

其中噪声属于标准正态分布,这使得样本不总是导向一个mode,还会采样到mode周围增加样本多样性。

2)需要已知真实的score function.。

由于优化的目标函数为,最小化真实分数和网络的Fisher Divergence。 因此对于未知真实的score function 的情况需要使用其他采样方法如sliced-score matching。

3.简单直接的score matching主要存在以下三个问题

(观点来自:Generative modeling by estimating gradients of the data distribution)

一,当x位于高维空间的低维流形上,目标的score function就难以求解。因为所有不在低维流形上的点的概率为零,likelihood不存在。

二、在低密度区域,使用简单直接的score matching会导致结果不准确。直观的理解,模型在不常见的样本上可学习到的信号非常少,而学习到更多噪声。

三、langevin dynamics采样不适合存在混合的分布。因为log->梯度会使得混合分布的比例系数丢失。即使某个分布有更大的比例系数,但采样到该分布的概率和其他分布相同。

以上三个问题的解决方案:

向分布增加多个程度的高斯噪声:

目标函数变化为:

 其中\{​{\sigma_t}\}^T_{t=1}为noise level,并且\lambda(t)是在不同噪声程度的权重。

 

----------------------------------------

1. flexible function

用带参函数拟合任意函数,选择参数使得函数的一阶导和二阶导和被拟合函数的一阶导、二阶导相同?? (好像并不是常用概念)

2.为什么在已知后验分布的分析式后还要采样

有时候分布太复杂,而不能直接求解积分,如函数的期望、范围。

4.什么是低维流形(low-dimensional manifold)

当你站在上面会认为是一个有限维度的无穷空间,如站在地球上,认为地球是一个2d无穷平面。

5.MCMC方法

包括the Metropolis-adjusted Langevin algorithm (MALA) or Langevin Monte Carlo (LMC)

MCMC方法主要被用在不能直接得到概率分布的数学表达的时候,即Monte Carlo sampling方法不能被使用。 因此通过Markov Chain采样。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值