概率之常用概率分布

1. Bernoulli分布

单个二值随机变量的分布。它由单个参数\small \phi \in [0,1]控制,\small \phi给出了随机变量等于1的概率。它具有如下的一些性质。

\small P(x=1)=\phi

\small P(x=0)=1-\phi

\small P(\mathrm x = x) = \phi ^x (1 - \phi)^{1-x}

\small E_x[x] = \phi

\small Var_x(x) = \phi (1 - \phi)

2. Multinoulli分布

Multinoulli分布(multinoulli distribution)或者范畴分布(categorical distribution)是指在具有k个不同状态的单个离散型随机变量上的分布,其中k是一个有限值。

3. 高斯分布

高斯分布(Gaussian distribution)也称为正态分布(normal distribution):

\small \mathcal N (x; \mu, \sigma ^2) = \sqrt {\frac{1}{2\pi \sigma ^2}} exp (-\frac{1}{2 \sigma ^2} (x - \mu) ^ 2)

正态分布由两个参数控制,\small \mu \in \mathbb R, \sigma \in (0, \infty)。参数\small \mu给出了中心峰值的坐标即期望值E[x],分布的标准差用\small \sigma表示,方差用\small \sigma ^2表示。为表示方便,令\small \beta = \frac{1}{\sigma ^2}, \beta \in (0, \infty),上式可写成如下形式:

\small \mathcal N(x; \mu, \beta ^{-1}) = \frac{\beta}{2\pi} exp (-\frac{1}{2} \beta(x - \mu) ^ 2)

当我们缺乏关于某个实数上分布的先验知识而不知道该选择怎样的形式时,正态分布是默认的比较好的选择。原因有如下两个:

1. 我们想要建模的很多分布的真实情况是比较接近正态分布的。

2. 在具有相同方差的所有可能的概率分布中,正态分布在实数上具有最大的不确定性。

正态分布可以推广到\small \mathbb R^n空间,这种被称为多维正态分布(multivariate normal distribution)。它的参数是一个正定对称矩阵\small \Sigma:

\small \mathcal N(x; \mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^n det(\Sigma))}} exp (-\frac{1}{2}(x - \mu)^{\top} \Sigma ^ {-1} (x - \mu))

参数\small \mu仍然表示的是分布的均值,只不过不再是标量而是一个向量值。参数\small \Sigma给出了分布的协方差矩阵。令\small \beta = \Sigma ^ {-1}

\small \mathcal N(x; \mu, \beta ^ {-1}) = \sqrt{\frac{det(\beta)}{(2\pi)^n}} exp (-\frac{1}{2}(x - \mu)^{\top} \beta (x - \mu))

4. 指数分布和Laplace分布

指数分布(exponential distribution):

\small \begin{center} p(x;\lambda) = \lambda1_{x \geq 0} exp(- \lambda x) \end{center}

指数分布用指示函数(indicator function) \small 1_{x \geq 0} 来使得当x取负值时的概率为零。

一个联系紧密的概率分布是Laplace分布,它允许我们在任意一点\small \mu处设置概率质量的峰值:

\small Laplace(x; \mu, \gamma) = \frac{1}{2 \gamma} exp (- \frac{|x - \mu|}{\gamma})

5. Dirac分布和经验分布

在一些情况下,我们希望概率分布中的所有质量都集中在一个点上。这可以通过Dirac delta函数(Dirac delta function)定义概率密度函数来实现:

\small p(x) = \delta(x - \mu)

Dirac分布经常作为经验分布(empirical distribution)的一个组成部分出现:

\small \hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta(x - x^{(i)})

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值