点到线段的最短距离——矢量法

本文介绍了一种计算点到线段最短距离的矢量法算法,并通过具体代码实现展示了该算法的工作原理。适用于游戏开发及计算机图形学等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看recast&detour源码的时候有遇到许多数学上的算法问题,特此记录,以便以后查看。

矢量法推导: 

求点P到线段AB的最短距离。分成以下三种情况(a),(b),(c)。

(勘误:d=PC 应该是在 ∠PAB和∠PBA都小于90°的情况下,而不是▲ABP为锐角▲)

所以可以先根据计算出r的值,进而对应计算A点 B点  C点 和 P点之间的距离即可。

特殊情况:

1.当P在线段AB上:计算出来r仍然是 1>r>0, P点即C点,PC的距离d = 0; 

2.当P在线段AB端点或其延长线上:r仍然有是 r<=0 或者是 r >= 1,仍然是计算 PA 或 PB 的距离;

3.当AB是同一点:无法计算r,所以需要对AB的长度进行一个判断,如果是AB为零,直接令r = 0,直接计算AP或BP的距离都一样。

库中代码:

点pt 到线段pq的最短距离。

static float distancePtSeg(const float* pt, const float* p, const float* q)
{

    // 先计算r的值 看r的范围 (p相当于A点,q相当于B点,pt相当于P点)
    // AB 向量
	float pqx = q[0] - p[0];
	float pqy = q[1] - p[1];
	float pqz = q[2] - p[2];
    // AP 向量
	float dx = pt[0] - p[0];
	float dy = pt[1] - p[1];
	float dz = pt[2] - p[2];

    // qp线段长度的平方=上面公式中的分母:AB向量的平方。
	float d = pqx*pqx + pqy*pqy + pqz*pqz;   
    // (p pt向量)点积 (pq 向量)= 公式中的分子:AP点积AB
	float t = pqx*dx + pqy*dy + pqz*dz;         

    // t 就是 公式中的r了 
	if (d > 0)         // 除数不能为0; 如果为零 t应该也为零。下面计算结果仍然成立。                   
		t /= d;    // 此时t 相当于 上述推导中的 r。
	
    // 分类讨论 
    if (t < 0)
		t = 0;     // 当t(r)< 0时,最短距离即为 pt点 和 p点(A点和P点)之间的距离。
	else if (t > 1)
		t = 1;     // 当t(r)> 1时,最短距离即为 pt点 和 q点(B点和P点)之间的距离。

	// t = 0,计算 pt点 和 p点的距离; (A点和P点)
    // t = 1, 计算 pt点 和 q点 的距离; (B点和P点)
    // 否则计算 pt点 和 投影点 的距离。(C点和P点 ,t*(pqx,pqy,pqz)就是向量AC)
	dx = p[0] + t*pqx - pt[0];
	dy = p[1] + t*pqy - pt[1];
	dz = p[2] + t*pqz - pt[2];

    // 算出来是距离的平方,后续自行计算距离
	return dx*dx + dy*dy + dz*dz;
}

算法优点:

矢量法代码简单,计算量少。无需进行复杂的分类讨论,无需进行角度计算,无需进行面积计算等。

参考:

新浪博客

GitHub - recastnavigation/recastnavigation: Navigation-mesh Toolset for Games

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ivy_0709

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值