题意:给出矩阵A(N*K) B(K*N),有以下几个步骤
1. 计算C = A * B 2. 计算 M = C^(N*N),3.对M的每个元素mod 6,计算所有元素的和。
思路:因为1 <= A,B,<=1000,直接计算一定会超时。
细心的人可以发现,1<= K<= 6,K特别小。所以如果我们将复杂度和K扯上关系就行了。
矩阵乘法满足结合律,所以:M = C ^(N * N) = (A B) ^ (N * N) = A * (BA) ^ (N * N - 1) *B;这样我们能够降低复杂度了。
(能否想到,算法导论中,将动态规划的那一章,是不是有个求矩阵乘法的最少的运算次数?)
代码如下:
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
typedef long long ll;
const int MOD = 6;
mat mul(mat & A, mat &B)
{
mat C(A.size(), vec(B[0].size()));
for(int i = 0 ; i < A.size(); ++i)
for(int k = 0 ; k < B.size(); k++)
for(int j = 0 ; j < B[0].size();++j)
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD;
return C;
}
mat pow(mat A, ll n)
{
mat B (A.size(),vec(A.size()));
for(int i = 0 ; i < A.size(); ++i)
B[i][i] = 1;
while(n){
if(n & 1) B = mul(B,A);
A = mul(A,A);
n >>= 1;
}
return B;
}
int N,K;
int main(void)
{
//freopen("input.txt","r",stdin);
while(scanf("%d%d", &N,&K), N || K){
mat A(N,vec(K));
mat B(K,vec(N));
for(int i = 0; i < N; ++i)
for(int j = 0 ; j < K; ++j)
scanf("%d",&A[i][j]);
for(int i = 0 ; i < K; ++i)
for(int j = 0 ; j < N; ++j)
scanf("%d", &B[i][j]);
mat C = mul(B,A);
C = pow(C,N * N - 1);
C = mul(A,C);
C = mul(C,B);
long long ans = 0;
for(int i = 0,szi = C.size(); i < szi; ++i)
for(int j = 0, szj = C[0].size(); j <szj; ++j)
ans += C[i][j];
printf("%I64d\n",ans);
}
return 0;
}