HDU 4965 Fast Matrix Calculation 想法题

题意:给出矩阵A(N*K) B(K*N),有以下几个步骤

          1. 计算C = A * B 2. 计算 M = C^(N*N),3.对M的每个元素mod 6,计算所有元素的和。

思路:因为1 <= A,B,<=1000,直接计算一定会超时。

          细心的人可以发现,1<= K<= 6,K特别小。所以如果我们将复杂度和K扯上关系就行了。

          矩阵乘法满足结合律,所以:M = C ^(N * N) = (A B) ^ (N * N) = A * (BA) ^ (N * N - 1) *B;这样我们能够降低复杂度了。

          (能否想到,算法导论中,将动态规划的那一章,是不是有个求矩阵乘法的最少的运算次数?)

代码如下:

#include <cstdio>
#include <algorithm>
#include <vector>

using namespace std;

typedef vector<int> vec;
typedef vector<vec> mat;
typedef long long ll;

const int MOD = 6;

mat mul(mat & A, mat &B)
{
    mat C(A.size(), vec(B[0].size()));
    for(int i = 0 ; i < A.size(); ++i)
        for(int k = 0 ; k < B.size(); k++)
            for(int j = 0 ; j < B[0].size();++j)
                C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD;
    return C;
}
mat pow(mat A, ll n)
{
    mat B (A.size(),vec(A.size()));
    for(int i = 0 ; i < A.size(); ++i)
        B[i][i] = 1;
    while(n){
        if(n & 1) B = mul(B,A);
        A = mul(A,A);
        n >>= 1;
    }
    return B;
}
int N,K;

int main(void)
{
    //freopen("input.txt","r",stdin);
    while(scanf("%d%d", &N,&K), N || K){
        mat A(N,vec(K));
        mat B(K,vec(N));
        for(int i = 0; i < N; ++i)
            for(int j = 0 ; j < K; ++j)
                scanf("%d",&A[i][j]);
        for(int i = 0 ; i < K; ++i)
            for(int j = 0 ; j < N; ++j)
                scanf("%d", &B[i][j]);
        mat C = mul(B,A);
        C = pow(C,N * N - 1);
        C = mul(A,C);
        C = mul(C,B);
        long long ans = 0;
        for(int i = 0,szi = C.size(); i < szi; ++i)
            for(int j = 0, szj = C[0].size(); j <szj; ++j)
                ans += C[i][j];
        printf("%I64d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值