UVA 10181 15-Puzzle Problem IDA* 剪枝

题意:经典的15数码问题,给出这这15个数码的位置,问能否到达目标状态。如果能,输出对应的走法。

思路:这里用IDA*算法来解决这个问题。

            同八数码一样,我们定义h函数,为每个数字到目标位置的曼哈顿距离之和。

            然后这些写完,交上去就TLE。看来还需要优化。

            首先第一个优化,是对无解的判断。这里要用到逆序数的概念。

           当移动空格时可以发现,左右移动,是不改变这15个数字对应的序列的。而上下移动,会将4个数字的位置进行改变,这样会导致逆序数的奇偶性改变(+-3或+-1)。同时我们还要让空格移动到右下角的位置。

          所以,15数码有解的条件是:15个数字的逆序数加上空格移动到右下角的需要的行数的和 与 目标状态的逆序数的奇偶性相同。因为最终的状态的逆序数是偶数,所以给出的局面也应该是偶数。

          上面判定条件也可以推广,考虑N*N个格子的N*N-1数码问题,当N为奇数时,初始状态和目标状态的逆序数的奇偶性相同有解。当N为偶数时,首先计算初始状态到目标状态空格需要移动的行数m,当m加上初始状态的逆序数和目标状态的奇偶性相同,有解。

          但是这样写完后,还是TLE,还需要优化,看来只能在dfs中优化了。

          最重要的优化就是在下一步禁止向上一步的反方向移动,如果这样的话,就回到了原局面。因为在IDA*中没有判重函数,这样会大大增加搜索树的分支,降低效率。

          当然还可以直接传入空格的位置,而不是再次搜索。

代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>

using namespace std;

int pos[][2] = {3,3,0,0,0,1,0,2,
                0,3,1,0,1,1,1,2,
                1,3,2,0,2,1,2,2,
                2,3,3,0,3,1,3,2};
int dx[] = {0,1,-1,0};
int dy[] = {1,0,0,-1};
char dir[] = {'R','D','U','L'};
int en[16] = {1,2,3,4,
                5,6,7,8,
                9,10,11,12,
                13,14,15,0};
char path[100];
int puz[16];

int hstar()
{
    int h = 0;
    for(int i = 0; i < 16; ++i){
        int x = puz[i];
        if(x == 0) continue;
        h += abs(i / 4 - pos[x][0]) + abs(i % 4- pos[x][1]);
    }
    return h;
}


bool dfs(int p,int pre,int d, int maxd)
{
    if(d + hstar() > maxd) return false;

    if(d == maxd)
        return memcmp(puz,en,sizeof(en)) == 0;

    int x = p / 4, y = p % 4;
    for(int j = 0; j < 4; ++j){
        if(pre + j == 3) continue;
        int nx = x + dx[j], ny = y + dy[j];
        int nz = 4 * nx + ny;
        if(nx >= 0 && nx < 4 && ny >= 0 && ny < 4){
            swap(puz[p],puz[nz]);
            path[d] = dir[j];
            if(dfs(nz,j,d+1,maxd)) return true;
            swap(puz[p],puz[nz]);
        }
    }
    return false;
}

bool solvable()
{
    int cnt = 0;
    for(int i = 0; i < 16; ++i){
        if(puz[i] == 0)
            cnt += 3 - i / 4;
        else{
            for(int j = 0; j < i; ++j)
                if(puz[j] && puz[j] > puz[i])
                    cnt++;
        }
    }
    return !(cnt&1);
}

int main(void)
{
    //freopen("input.txt","r",stdin);
    int T,p;
    scanf("%d",&T);
    while(T--){
        for(int i = 0; i < 16; ++i){
            scanf("%d",&puz[i]);
            if(puz[i] == 0)
                p = i;
        }
        if(solvable()){
            int maxd = 0;
            for(;!dfs(p,-1,0,maxd); ++maxd);
            path[maxd] = 0,puts(path);
        }
        else
            puts("This puzzle is not solvable.");
    }
    return 0;
}


  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值