浅谈人工智能之VSCode:使用插件与ollama本地大模型交互

浅谈人工智能之VSCode:使用插件与ollama本地大模型交互

我们在之前的文档中已经说明如何使用Ollama部署本地大模型,这里就赘述,具体如何部署可参考文档:
浅谈人工智能之Windows:基于ollama进行本地化大模型部署

准备工作

安装Visual Studio Code

如果你还没有安装VSCode,请下载适合你操作系统的vscode版本并且进行安装,vscode安装比较简单,这里不再赘述。

安装VSCode插件

为了在VSCode中与Ollama模型交互,你需要安装一个支持Ollama的插件。当前市场上可能有多个插件选项,我们这里使用continue插件跟Ollama进行交互。
第一步:点击VSCode左侧的Extensions按钮
在这里插入图片描述
第二步:在搜索框中输入continue关键字进行搜索
在这里插入图片描述
第三步:我们对插件进行安装,我们需要安装的插件是“Continue-Codestral,Claude,and

### 配置和使用 Ollama #### 安装必要的工具和扩展 为了能够在 Visual Studio Code (VSCode) 中配置并使用 Ollama,需先确保已安装最新版的 VSCode。对于希望利用本地部署的大规模机器学习模型工作的开发者来说,这一步骤至关重要[^1]。 接着,在 VSCode 内部集成环境里添加特定插件支持是必不可少的操作之一;例如,“Twinny”作为一款增强型代码辅助工具被推荐用于此目的,它能够有效解决其他类似应用可能存在的频率限制问题,从而保障更流畅的工作体验[^2]。 #### 设置 Ollama 插件 当准备就绪之后,则可以转向具体设置过程——即针对所选插件(如 Twinny 或 Cody)进行个性化调整以适配个人需求。特别是当用户返回到像 Cody 这样的界面做进一步定制化处理时,会注意到新增加了一个名为 'Ollama' 的选项,允许直接访问由后者提供的强大功能集[^3]。 #### 修改配置文件使能特性 最后也是至关重要的环节在于编辑 `config.json` 文件中的参数定义部分: ```json { "tabAutocompleteModel": { "title": "codegemma:7b", "model": "codegemma:7b", "provider": "ollama", "contextLength": 16384 }, "embeddingsProvider": { "provider": "ollama", "model": "nomic-embed-text" } } ``` 上述 JSON 片段展示了如何指定使用的模型名称及其提供者,并设置了上下文长度等重要属性,以此来激活基于 Ollama 提供的服务[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔波儿灞爱霸波尔奔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值