本地玩转大语言模型:Ollama 超详细指南

在 AI 浪潮下,大语言模型(LLMs)展现出令人惊叹的能力。但很多人在使用时会受限于云端调用的成本和隐私问题。今天就给大家介绍一个开源神器 ——Ollama,它能让你在本地轻松运行、部署和交互 LLMs,无论是开发、研究还是日常体验都超实用。

 

一、Ollama 是什么

Ollama 是一款开源工具,它简化了在本地计算机上运行、部署和交互大型语言模型的流程。支持 LLaMA 2、Mistral、Gemma 等多种模型,为开发者和研究者提供了便捷的本地实验和 AI 应用开发环境。

 

二、安装 Ollama

(一)支持平台及安装方式

  1. macOS:有两种安装方式,既可以直接下载安装包,也能借助 Homebrew 快速安装,在终端输入brew install ollama即可。
  2. Linux:使用一键安装脚本就能搞定,在终端运行curl -fsSL https://ollama.ai/install.sh | sh
  3. Windows(预览版):需要从 Ollama 官网下载安装程序进行安装。

 

(二)启动服务

安装完成后,Ollama 会在后台自动运行,默认端口是 11434。通过下面的命令可以管理服务:

  • ollama serve:启动服务。
  • ollama list:查看已下载的模型。

 

三、基础使用<

<think>好的,用户现在想进行一些简单的训练或者创建角色脚本,可能还有其他的玩法,但他自称是电脑小白,所以需要提供简单易懂的方法。首先,我需要回顾之前的对话,用户已经配置了Ollama,使用DeepSeek-R1-Distill-Qwen-14B模型,显卡是4060,显存8GB,并且之前已经指导过如何转换模型和调整参数。 现在用户的问题转向训练和角色脚本,可能他对现有模型的效果不满意,或者想个性化模型。但作为电脑小白,传统的微调训练(如全参数微调)可能太复杂,显存也不够。因此,需要考虑适合新手的替代方案,比如提示词工程、角色模板、RAG或者使用轻量级微调方法,比如LoRA。 首先,训练部分:需要判断用户是否有训练数据,是否有足够的计算资源。由于用户是小白且显存有限,应该推荐不需要大量资源的方法。比如,Ollama可能支持轻量级微调,或者结合本地知识库。另外,角色脚本可以通过设计提示词或使用角色模板来实现,不需要训练模型本身。 接下来,思考用户可能的深层需求。用户可能想创建不同的对话角色,比如客服、助手、游戏角色等,而不需要复杂的训练流程。因此,提供基于提示词和模板的方法会更合适。 然后,其他玩法可能包括连接应用,如聊天界面、自动化脚本,或者结合其他工具如Stable Diffusion生成内容。这些都需要简单易行的步骤,适合小白用户。 需要确保提供的步骤清晰,避免复杂命令,多用图形化工具或已有平台。比如,使用Ollama的Modelfile来定义角色,使用SiliconLabs或AnythingLLM搭建界面,或者通过Python脚本调用API实现自动化。 最后,检查是否有遗漏,比如是否需要安装额外软件,是否需要更多资源链接,以及注意事项,如显存限制、数据准备等。确保用户能够一步步操作,不会遇到太多障碍。</think>好的!针对“电脑小白”想进行简单训练、角色扮演或拓展玩法,我整理几个**零代码+低配置**的方案,根据你的兴趣选择: --- ### 一、**角色脚本:用提示词直接“调教”模型** **适用场景**:想让模型扮演特定角色(如客服、动漫人物、老师),无需训练,修改提示词即可。 #### 操作步骤: 1. **创建角色模板**:在`F:\OLLAMA\models`中新建文件 `role-catgirl.txt`,内容: ```text SYSTEM """ 【角色设定】 你是一只傲娇的猫娘,名字叫小橘,说话句尾带“喵~”。喜欢用颜文字,比如(≧ω≦)/。拒绝回答复杂问题,只卖萌。 """ ``` 2. **启动时动态加载**: ```bash ollama run my-deepseek --system "$(cat F:\OLLAMA\models\role-catgirl.txt)" ``` *效果:每次对话模型都会按设定扮演角色* --- ### 二、**简单训练:用“问答对”微调(适合小白)** **适用场景**:想让模型学会特定问答(如公司产品介绍、游戏NPC对话)。 #### 操作步骤: 1. **准备训练数据**:新建`train.json`,内容示例: ```json [ { "question": "你们公司主营什么?", "answer": "我们专注AI助手开发,主打Ollama定制模型喵~" }, { "question": "怎么联系客服?", "answer": "请拨打热线:123-喵喵喵喵,24小时在线哦(≧∇≦)ノ" } ] ``` 2. **使用轻量工具**(无需写代码): - 下载[Ollama-WebUI](https://github.com/ollama-webui/ollama-webui)(可视化界面) - 在Web界面中上传`train.json`,选择“Few-shot微调”(仅需点击操作) --- ### 三、**进阶玩法:连接其他工具** #### 1. **AI聊天室**(本地部署): - 工具推荐:[SiliconLabs](https://github.com/siliconlabs/ai_chat)(一键安装包) - 效果:像微信一样对话,支持多角色切换、历史记录 #### 2. **自动化脚本**(实用向): - **自动整理会议记录**: ```bash ollama run my-deepseek --prompt "请将以下内容提取为Markdown表格,列包括【议题】【负责人】【截止时间】:$(cat meeting.txt)" ``` - **生成Excel公式**: ```bash ollama run my-deepseek --prompt "用Excel公式实现:如果A列>100,B列显示‘达标’,否则‘未达标’" ``` #### 3. **结合图像生成**: - 安装[Stable Diffusion](https://github.com/AUTOMATIC1111/stable-diffusion-webui)(免费开源) - 让模型生成图片描述词(Prompt): ```bash ollama run my-deepseek --prompt "生成一个‘赛博朋克猫娘’的英文Stable Diffusion提示词,包含细节描述" ``` --- ### 四、**避坑指南** 1. **显存不足时**: - 在Modelfile中添加:`PARAMETER low_vram true` - 量化模型选择`q5_k_m`(平衡精度和性能) 2. **训练数据建议**: - 数据量小(<100条)时,用**提示词引导**而非训练 - 数据格式:`问题+答案`尽量简短(避免长文本) 3. **角色扮演进阶**: - 使用[角色卡模板](https://rentry.org/charactercard)(社区常用格式) - 示例模板: ```yaml char_name: 小橘 personality: 傲娇|猫娘|喜欢鱼 scenario: 在咖啡馆打工 first_mes: 哼,才不是特意等你呢喵~ (◕ᴗ◕✿) ``` --- 如果对某一步骤感兴趣,可以告诉我具体方向(比如“想先试试角色扮演”),我会展开详细教程! (^_−)☆
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东锋17

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值