第3节 “茴香豆“:搭建你的 RAG 智能助理 作业

茴香豆是一款基于LLM的解决方案,通过RAG技术结合外部知识库提供精确回答,尤其适合群聊场景。它低成本、易部署,支持多种平台,并介绍了个人部署步骤。然而,知识库的局限性有时会影响答案的准确性。
摘要由CSDN通过智能技术生成

1. 在茴香豆 Web 版中创建自己领域的知识问答助手

RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。

“茴香豆”是一个基于 LLM 的领域知识助手。特点: 应对群聊这类复杂场景,解答用户问题的同时,不会消息泛滥 提出一套解答技术问题的算法 pipeline 部署成本低,只需要 LLM 模型满足 4 个 trait 即可解答大部分用户问题。

茴香豆的优势如下:

  1. 设计拒答、响应两阶段 pipeline 应对群聊场景,解答问题同时不会消息泛滥。精髓见技术报告

  2. 成本低至 1.5G 显存,无需训练适用各行业

  3. 提供一整套前后端 web、android、算法源码,工业级开源可商用

个人部署有如下步骤

  1. 建立话题特征库

  2. 运行基础版技术助手

    1. 配置免费 TOKEN:茴香豆使用了搜索引擎,点击 Serper 官网获取限额 TOKEN,填入 config.ini

    2. 测试问答效果

  3. 集成飞书/个人微信

    1. 点击创建飞书自定义机器人,获取回调 WEBHOOK_URL,填写到 config.ini

    2. 运行结束后,技术助手的答复将发送到飞书群。

  4. 使用更高精度 local LLM或者通过Hybrid LLM Service提升效果

以下记录在茴香豆 Web 版中创建自己领域的知识问答助手和对话的过程。

首先输入不少于八个汉字的知识库名称,初次会自动进行任务创建。

上传文档:

测试对话:

可以发现知识库的限制还是比较大。比如有时候可以找到对应的人物信息(景元),有时候找不到对应人物的信息(白露),即使已经上传了对应的文本文件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值