1. 在茴香豆 Web 版中创建自己领域的知识问答助手
RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。
“茴香豆”是一个基于 LLM 的领域知识助手。特点: 应对群聊这类复杂场景,解答用户问题的同时,不会消息泛滥 提出一套解答技术问题的算法 pipeline 部署成本低,只需要 LLM 模型满足 4 个 trait 即可解答大部分用户问题。
茴香豆的优势如下:
-
设计拒答、响应两阶段 pipeline 应对群聊场景,解答问题同时不会消息泛滥。精髓见技术报告
-
成本低至 1.5G 显存,无需训练适用各行业
-
提供一整套前后端 web、android、算法源码,工业级开源可商用
个人部署有如下步骤
-
建立话题特征库
-
运行基础版技术助手
-
配置免费 TOKEN:茴香豆使用了搜索引擎,点击 Serper 官网获取限额 TOKEN,填入
config.ini
-
测试问答效果
-
-
集成飞书/个人微信
-
点击创建飞书自定义机器人,获取回调 WEBHOOK_URL,填写到 config.ini
-
运行结束后,技术助手的答复将发送到飞书群。
-
-
使用更高精度 local LLM或者通过Hybrid LLM Service提升效果
以下记录在茴香豆 Web 版中创建自己领域的知识问答助手和对话的过程。
首先输入不少于八个汉字的知识库名称,初次会自动进行任务创建。
上传文档:
测试对话:
可以发现知识库的限制还是比较大。比如有时候可以找到对应的人物信息(景元),有时候找不到对应人物的信息(白露),即使已经上传了对应的文本文件。