AE/VAE/DDPM对比分析

本文对比分析了扩散模型(如DDPM)、变分自编码器(VAE)和自编码器(AE)在图像生成领域的优缺点。扩散模型在建模数据分布和训练稳定性上表现出优势,而VAE在建模复杂分布时面临挑战,AE在生成新数据方面受限。文章还探讨了条件扩散模型的实现方式,如classifier-guidance和classifier-free,并列举了相关应用如DALLE-2和GLIDE。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 将自动编码器(AE)转换为扩散模型 #### 自动编码器与变分自编码器的区别 传统自动编码器(AE)通过将输入数据映射到低维隐空间中的单个点来表示数据,而变分自编码器(VAE)[^1]则更进一步,在编码阶段输出的是一个概率分布而非具体的数值。具体来说,对于给定的输入样本\(x\),VAE会计算其对应的潜在变量\(z\)的概率密度函数参数——即均值\(\mu(x)\)和方差\(\sigma^{2}(x)\),并从中随机抽取样本作为解码过程的起点。 #### 扩散模型概述 扩散模型是一种基于马尔可夫链原理构建起来的强大生成对抗网络替代方案之一[^2]。这类方法通过对噪声逐步去噪的过程模拟真实世界的数据分布特性,从而达到合成新实例的目的。最初由Jonathan Sohl-Dickstein等人于2015年引入,并经历了多个版本迭代优化,如DDPM(Denoising Diffusion Probabilistic Models), DDIM(Diffusion Denoising Implicit Models)等改进型结构的发展完善。 #### 实现从AE扩散模型转变的关键要素 要使传统的自动编码架构适应扩散建模的要求,主要涉及以下几个方面的调整: - **多步渐进式降噪机制**:不同于一次性重建目标的传统做法,新的体系需设计一个多时间尺度上的反向传播路径,使得每一步都能够有效地去除部分加性高斯白噪音成分。 - **条件依赖关系建立**:为了更好地控制生成质量以及多样性表现,可以在原有基础上增加额外的信息源指导整个演化流程;比如利用类别标签、文本描述或者其他形式的相关提示信息辅助特征提取层的学习过程。 - **损失函数重构**:考虑到最终目的是最小化预测结果同原始信号间的差异度量,因此有必要重新定义适合当前场景下的代价评估准则。通常情况下采用KL散度衡量两个连续型随机变量间相似性的程度加上L2范数约束项共同作用形成综合评价指标。 ```python import torch.nn as nn from torchvision import datasets, transforms class SimpleDiffusionModel(nn.Module): def __init__(self, base_ae_model): super(SimpleDiffusionModel, self).__init__() # 假设base_ae_model是一个预训练好的基础AE模型 self.encoder = base_ae_model.encoder self.decoder = base_ae_model.decoder # 添加用于处理不同timestep状态转移操作的新组件... pass def forward(self, x, t=None): # 这里的't'代表当前所处的时间戳位置 if t is None: raise ValueError("Time step 't' must be specified.") z_mean, z_log_var = self.encoder(x) epsilon = torch.randn_like(z_mean) # 计算带有时序特性的隐含表征 z_tilde = z_mean + torch.exp(0.5 * z_log_var) * epsilon # 应用特定时刻下的逆变换逻辑恢复原貌 reconstructed_x = self.decoder(z_tilde) return { "reconstruction": reconstructed_x, "latent_dist_params": (z_mean, z_log_var), "noise_level": t } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值