在几何学中有点,线,边,图形的概念,这些概念在计算机中也存在,但是可能会有所不同,比如数学中的直线是表示两端无限延伸的一条线,并且在数学中直线是没有宽度的,但是计算机中无法做到无限延伸,可以说计算机中的直线概念更像是数学中的线段概念,两个点的相连。同样点也是一样,数学中的点是表示一个坐标,并没有大小。计算机中无论图形设备多么精密也做不到显示一个无穷小的点,一般不设置点的大小的画,计算机会把点显示为1像素大小。在OpenGL中规定,一个多边形必须是一个“凸多边形”(多边形内任意两点所确定的线段都在多边形内,由此也可以推导出,凸多边形不能是空心的)。多边形可以由其边的顶点来确定。
好了,通过了解这些概念,我们可以利用点,线,多边形通过一些数学运算构成各种几何图形。
在OpenGL中确定点
在上高中的时候,数学老师在讲几何基础的时候说过,点连成线,线移动成面。可以说点是所有几何图形的基础。在OpenGL中为我们提供了一系列函数来指定点,他们都是以glVertex开头,后面的数字表示参数,f,d等表示数据类型(有编程的应该都会清楚)。v结尾的函数参数是指针。OpenGL和C/C++不同的是,OpenGL中是没有定义sting和char类型(或者说是没有必要用)的,因为这些类型在图形中是没有意义的。还有int型在OpenGL中将这个类型定义为GLint和GLsizei;float型在OpenGL中将这个类型定义为GLfloat和GLclampf;double型在OpenGL中将这个类型定义为GLdouble和GLclampd。这些函数虽然参数类型和个数不同,但是却可以表示相同的功能,如下面几行代码的功能是一样的:
glVertex2i(1, 3);
glVertex2f(1.0f, 3.0f);
glVertex3f(1.0f, 3.0f, 0.0f);
glVertex4f(1.0f, 3.0f, 0.0f, 1.0f);
GLfloat VertexArr3[] = {
1.0f, 3.0f, 0.0f};
glVertex3fv(VertexArr3);
开始具体的绘制
我们知道如何确定顶点了,但是我们该如何约束这些点的行为呢?我们是要连成一条线,或者绘制一个多边形?OpenGL为我们提供了glBengin方法。OpenGL规定:指定顶点的命令必须包含在glBegin函数之后,glEnd函数之前(否则指定的顶点将被忽略)。并由glBegin来指明如何使用这些点。例如:
glBegin(GL_POINTS);//指定这些顶点的行为为GL_POINTS
glVertex2f(0.0f, 0.0f);
glVertex2f(0.5f,