LSTM 与 Bilstm介绍(包含代码实现、Python)

137 篇文章 64 订阅 ¥19.90 ¥99.00
本文介绍了BiLSTM的基本原理,通过情感分类任务解释为何使用LSTM和BiLSTM,详细阐述LSTM的计算过程,并提供了一个PyTorch实现BiLSTM的代码示例。
摘要由CSDN通过智能技术生成

1.1 文章组织

本文简要介绍了BiLSTM的基本原理,并以句子级情感分类任务为例介绍为什么需要使用LSTM或BiLSTM进行建模。在文章的最后,我们给出在PyTorch下BiLSTM的实现代码,供读者参考。

1.2 情感分类任务

自然语言处理中情感分类任务是对给定文本进行情感倾向分类的任务,粗略来看可以认为其是分类任务中的一类。对于情感分类任务,目前通常的做法是先对词或者短语进行表示,再通过某种组合方式把句子中词的表示组合成句子的表示。最后,利用句子的表示对句子进行情感分类。

举一个对句子进行褒贬二分类的例子。

句子:我爱赛尔

情感标签:褒义

1.3 什么是LSTM和BiLSTM?

LSTM的全称是Long Short-Term Memory,它是RNN(Recurrent Neural Network)的一种。LSTM由于其设计的特点,非常适合用于对时序数据的建模,如文本数据。BiLSTM是Bi-directional Long Short-Term Memory的缩写,是由前向LSTM与后向LSTM组合而成。两者在自然语言处理任务中都常被用来建模上下文信息。

1.4 为什么使用LSTM与BiLSTM

以下是使用BiLSTM进行时间序列预测的Python实现代码: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM, Bidirectional # 读取数据 data = pd.read_csv('data.csv', usecols=[1]) # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) # 划分训练集和测试集 train_size = int(len(data) * 0.7) test_size = len(data) - train_size train, test = data[0:train_size,:], data[train_size:len(data),:] # 将时间序列转换为有监督学习问题 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] X.append(a) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 3 train_x, train_y = create_dataset(train, look_back) test_x, test_y = create_dataset(test, look_back) # 转换输入格式为 [样本数, 时间步数, 特征数] train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1)) test_x = np.reshape(test_x, (test_x.shape[0], test_x.shape[1], 1)) # 构建BiLSTM模型 model = Sequential() model.add(Bidirectional(LSTM(50, activation='relu'), input_shape=(look_back, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 model.fit(train_x, train_y, epochs=100, batch_size=1, verbose=2) # 预测测试集 test_predict = model.predict(test_x) # 反归一化 test_predict = scaler.inverse_transform(test_predict) test_y = scaler.inverse_transform([test_y]) # 计算RMSE rmse = np.sqrt(np.mean((test_predict - test_y) ** 2)) print('RMSE:', rmse) # 绘制预测结果 plt.plot(test_y[0], label='true') plt.plot(test_predict[:,0], label='predict') plt.legend() plt.show() ``` 其中,`data.csv`是时间序列数据文件,包含一列数据。代码中使用`MinMaxScaler`进行数据归一化处理,将时间序列转换为有监督学习问题,构建BiLSTM模型,并训练模型。最后,预测测试集并计算RMSE,最后绘制出预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨痕诉清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值