引言
大学时期的法律选修课程上,霍姆斯的这句法学箴言:"法律的生命不在于逻辑,而在于经验. The life of law doesn't lie in logic, but experience." 这句话使我记忆犹新 ,在AI大模型时代的今天这句话被赋予了新的注解。
正如罗翔老师曾指出:"真正的法治精神,是将复杂的法条转化为普通人触手可及的正义"。当劳动纠纷咨询量以每年23%的速度增长(2023年中国司法大数据),传统法律服务模式面临严峻挑战。法律顾问助手的出现,正通过"大模型+法律知识引擎"的技术范式,实现霍姆斯与罗翔共同追求的法治理想。
RAG + 大模型 + 法律 :赋能普惠法律服务
罗翔教授倡导的"法条通俗化"理念,正通过 由腾讯云首发的大模型知识引擎(LLM Knowledge Engine),得以实现——该平台面向企业客户及合作伙伴的,基于大模型的应用构建平台,结合企业专属数据,更快更高效地搭建Agent、RAG、工作流等多种模式应用,推动大语言模型在企业中的应用落地。
应用管理
创建应用
输入智能体名称:
模型配置
新建完成后,对模型相关信息进行详细配置。
-
模型配置:用于调节模型设置。
-
思考模型:主要影响意图识别效果。
-
生成模型:主要用于理解阅读和答案生成。
-
选择模型:DeepSeek-R1和DeepSeek-V3
DeepSeek-R1和DeepSeek-V3的主要区别的表格对比
对比维度 | DeepSeek-R1 | DeepSeek-V3 |
---|---|---|
定位与用途 | 早期版本,侧重基础任务处理 | 升级版本,优化复杂任务和多模态能力 |
模型规模 | 参数量较小(如百亿级) | 参数量更大(可能千亿级或优化架构) |
训练数据 | 基于早期数据,覆盖通用领域 | 扩展更多领域数据(如代码、多语言、专业文档) |
推理效率 | 计算资源需求较低 | 优化推理速度,支持分布式计算 |
多模态支持 | 可能仅支持文本 | 可能支持文本、图像、音频等多模态输入 |
任务泛化性 | 基础 NLP 任务(如分类、生成) | 复杂任务(如长文本生成、逻辑推理、代码生成) |
微调与部署 | 轻量化部署,适合中小场景 | 支持定制化微调和企业级大规模部署 |
性能表现 | 在基准测试中表现中等 | 在权威评测(如 GLUE、MMLU)中表现更优 |
角色指令
通过填写描述,设定应用的 #角色名称 、#风格特点 及可达成的#意图。 建议按照模版填写,且自定义意图建议不超过5个。
模板设置
一键优化
通过一键优化功能,对角色指令信息进行润色,使其内容更加丰满,完善。
优化过程
如何对角色描述
思考行业痛点,通过什么样的方式能够解决这些痛点问题。例如:
-
痛点:许多劳动法纠纷源于员工和管理层对相关法规的不了解。企业未能有效开展法律培训,导致员工在遇到劳动争议时无法准确判断自己的权益。
-
痛点:随着社会对多元化和包容性重视度的增加,企业面临着如何合法地管理不同背景、性别、年龄、性取向等员工群体的挑战。尤其是在一些地区,针对特定群体的劳动法规逐渐增多,管理复杂性提升。
-
痛点:企业在处理员工的加班和工资支付时,常常没有严格遵守相关法律法规,可能存在支付不及时、加班工资不符等情况,导致员工不满或产生法律诉讼。
欢迎语
欢迎语既能够明确告知用户服务内容,也表达了助手的专业性和服务的亲切感,增强用户信任。
知识库
文档类知识是指以文档的形式存在的知识,如 PDF、docx、txt 等格式的文件以及网页;结合知识引擎的能力,将知识导入系统后,设定的应用将形成基于有关知识的业务知识库,可直接根据知识库中的内容对用户问题进行解答。
高级选项
文档
知识管理:添加知识分类
构建知识库
导入知识库
从网页导入
导入成功后
-
删除无效的内容
-
添加自定义标签
-
设置文本内容的有效时间
-
是否开启外部的链接
-
将知识库进行归类
等待成功解析即可。
更多法律法规,可以登录 国家法律法规数据库进行下载:国家法律法规数据库
从本地文档导入
问答
-
批量导入问答:支持从本地文件导入问答内容
-
手动录入问答:手动输入一对问答内容
-
从文档生成:在文档管理页选择文档生成问答内容
相关法律问答资料,可以从中国裁判文书网获取:首页
联网搜索
结合联网信息,给用户提供对于更实时、更丰富的知识回复
如果业务场景需要围绕知识库提供更为严谨的回复,建议将“联网搜索”关闭、并将回复设置切换为“大模型对知识来源以外的问题,按填写内容回复”。
工作流
工作流为用户提供了直观的可视化画布,支持通过大模型、代码、参数提取等多种节点来编排复杂的业务流程。旨在实现稳定且可控的业务效果,确保每个流程节点的准确性和可解释性。
新建工作流
手动录入
-
名称:查询相似案例:
-
任务描述: 请在中国裁判文书网中查询与特定案件相似的案例信息,需包括案件类型、判决年份等关键词。
-
示例问题: "查询2020年故意伤害罪的相似案例","查找合同纠纷类案件的相似判决"
设定工作流
调试工作流
输出设置
流式,非流式
发布
点击发布按钮,输入发布说明:“法律的权威来自哪里?来自老百姓最朴素的情感期待,求的就是一个公平正义!”
发布成功后,回到首页;点击调用按钮,即可分享我们法律智能应用了。
我们来验证一下最终的成果。
结语
正如德国法学家耶林所言:"法律需要为正义而斗争"。正是DeepSeek模型与法律知识引擎深度融合,使我们得以见证每个劳动争议咨询背后,是大模型对823个法律特征的精准分析;每份合规审查报告的产生,都承载着大模型对司法数据的深度解读。这或许AI时代对"努力让人民群众在每一个司法案件中感受到公平正义"的最佳技术注脚。
腾讯云知识引擎通过"RAG+大模型+工作流"的技术,不仅实现了霍姆斯"经验沉淀"的数字化,更让罗翔教授"触手可及的正义"成为可量化的服务指标。随着《生成式人工智能服务管理暂行办法》的深化实施,这套体系将持续推动法律智能服务从"可用"向"可信"的跃迁,法律智能顾问必将在大模型与人类智慧的协同中,书写更具温度的法治故事。