中文分词评价指标——正确率、召回率和F1

中文分词评价指标——正确率、召回率和F1

在机器学习中的模型评价指标有准确率(precision)召回率(recall)准确率(Accuracy)和F值。

二分类的混淆矩阵:

真实值\预测值 Positive(1) Negative(0)
Positive(1)

True Positive

(TP)

False Positive

(FP)

Negative(0)

False Negative

(FN)

True Negative

(TN)

其中,TP代表预测是正样本(1),真实为正样本(1),预测对了;

FN代表预测是正样本(1),真实为负样本(0),预测错了;

FP代表预测是负样本(0),真实为正样本(1),预测错了;

TN代表预测是负样本(0),真实为负样本(0),预测对了。

精准率(Precision)

精准率(Precision)又称查准率:预测为正的样本中真实为正的样本

Precision = \frac{TP}{TP+NP}

召回率(Recall)

召回率(Recall)又称查全率:真实为正的样本中预测为正的样本

Recall = \frac{TP}{TP + FN}

准确率(Accuracy)

准确率(Accuracy):预测某类正确的样本比例

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值