中文分词评价指标——正确率、召回率和F1
在机器学习中的模型评价指标有准确率(precision)召回率(recall)准确率(Accuracy)和F值。
二分类的混淆矩阵:
真实值\预测值 | Positive(1) | Negative(0) |
Positive(1) | True Positive (TP) |
False Positive (FP) |
Negative(0) | False Negative (FN) |
True Negative (TN) |
其中,TP代表预测是正样本(1),真实为正样本(1),预测对了;
FN代表预测是正样本(1),真实为负样本(0),预测错了;
FP代表预测是负样本(0),真实为正样本(1),预测错了;
TN代表预测是负样本(0),真实为负样本(0),预测对了。
精准率(Precision)
精准率(Precision)又称查准率:预测为正的样本中真实为正的样本
召回率(Recall)
召回率(Recall)又称查全率:真实为正的样本中预测为正的样本
准确率(Accuracy)
准确率(Accuracy):预测某类正确的样本比例