SVM核函数理解

核函数参数的理解,不知道对不对。。。

SVM的决策函数可以理解为只依赖于输入和样本内积的一种映射,也正是这种内积计算使得SVM可以利用核技巧解决线性不可分的情况。核技巧的想法是,在学习和预测中只定义核函数,而不显示的定义映射函数。映射函数将输入空间映射到特征空间,而特征空间一般是高维的,甚至是无穷维的。

今天说两个事儿:高斯径项基核函数为什么可以映射到无穷维,以及,高斯径项基核函数里面的参数对模型有什么影响

1. 无穷维的特征空间:

一句话概括就是利用了泰勒展开。下面以二维空间为例:(图中核函数笔误:分母应该为平方项


2. 高斯核函数里面的参数对模型的影响


越小,对应的高斯函数形状越尖,越容易过拟合。可以考虑极限情况,特别特别特别小,此时,Klim(x, x') = [x = x'], 即当x=x'时,K(x, x') = 1, 当x != x'时,K(x, x') = 0,此时的高斯函数像一个脉冲函数,每一个x都是在判断新样本是不是和自己一样,所以就过拟合了!

此外,线性支持向量机引入了松弛变量和对应的惩罚参数C。C越大,对误分类惩罚越大,支持向量个数越多,模型越复杂。


  • 2
    点赞
  • 2
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏殇0808

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值