凸优化Python实战(7)_最速下降法

1.原理推导

1.1最速下降法的基本原理

在这里插入图片描述

1.2最速下降法的算法步骤

在这里插入图片描述

1.3最速下降法的最优步长

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.计算案例:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.总结

在这里插入图片描述

4.代码实现

代码可以在 https://github.com/HarmoniaLeo/optimization-in-a-nutshell找到,如果帮助到你,请点个star,谢谢这对博主真的很重要!
本次引用Function.py和lagb.py也可以在最优化(1)_ 最优化问题概念与基本知识 找到

import numpy as np
from Function import Function   #定义法求导工具
from lagb import *  #线性代数工具库

n=2 #x的长度

def myFunc(x):  #x是一个包含所有参数的列表
    return x[0]**2 + 2*x[1]**2 + 2*x[0] - 6*x[1] +1 #目标方程

x=np.zeros(n)   #初值点
rho=0.6
beta=1
sigma=0.4
e=0.001
k=0
tar=Function(myFunc)
while tar.norm(x)>e:
    d=-tar.grad(x)
    a=1
    if not (tar.value(x+a*d)<=tar.value(x)+rho*a*dot(turn(tar.grad(x)),d) and dot(turn(tar.grad(x+a*d)),d)>=sigma*dot(turn(tar.grad(x)),d)):
        a=beta
        while tar.value(x+a*d)>tar.value(x)+rho*a*dot(turn(tar.grad(x)),d):
            a*=rho
        while dot(turn(tar.grad(x+a*d)),d)<sigma*dot(turn(tar.grad(x)),d):
            a1=a/rho
            da=a1-a
            while tar.value(x+(a+da)*d)>tar.value(x)+rho*(a+da)*dot(turn(tar.grad(x)),d):
                da*=rho
            a+=da
    x+=a*d
    k+=1
    print(k)
print(x)

引用参考:

深入浅出最优化(3) 最速下降法与牛顿法:https://www.jianshu.com/p/c1f40133e04a
最速下降法(上):https://www.bilibili.com/video/BV1RK4y1a75C?spm_id_from=333.999.0.0
最速下降法(下):https://www.bilibili.com/video/BV1ey4y1k7jY?spm_id_from=333.999.0.0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪龙无敌

你的鼓励是我们一起前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值