1.原理推导
1.1最速下降法的基本原理
1.2最速下降法的算法步骤
1.3最速下降法的最优步长
2.计算案例:
3.总结
4.代码实现
代码可以在 https://github.com/HarmoniaLeo/optimization-in-a-nutshell找到,如果帮助到你,请点个star,谢谢这对博主真的很重要!
本次引用Function.py和lagb.py也可以在最优化(1)_ 最优化问题概念与基本知识 找到
import numpy as np
from Function import Function #定义法求导工具
from lagb import * #线性代数工具库
n=2 #x的长度
def myFunc(x): #x是一个包含所有参数的列表
return x[0]**2 + 2*x[1]**2 + 2*x[0] - 6*x[1] +1 #目标方程
x=np.zeros(n) #初值点
rho=0.6
beta=1
sigma=0.4
e=0.001
k=0
tar=Function(myFunc)
while tar.norm(x)>e:
d=-tar.grad(x)
a=1
if not (tar.value(x+a*d)<=tar.value(x)+rho*a*dot(turn(tar.grad(x)),d) and dot(turn(tar.grad(x+a*d)),d)>=sigma*dot(turn(tar.grad(x)),d)):
a=beta
while tar.value(x+a*d)>tar.value(x)+rho*a*dot(turn(tar.grad(x)),d):
a*=rho
while dot(turn(tar.grad(x+a*d)),d)<sigma*dot(turn(tar.grad(x)),d):
a1=a/rho
da=a1-a
while tar.value(x+(a+da)*d)>tar.value(x)+rho*(a+da)*dot(turn(tar.grad(x)),d):
da*=rho
a+=da
x+=a*d
k+=1
print(k)
print(x)
引用参考:
深入浅出最优化(3) 最速下降法与牛顿法:https://www.jianshu.com/p/c1f40133e04a
最速下降法(上):https://www.bilibili.com/video/BV1RK4y1a75C?spm_id_from=333.999.0.0
最速下降法(下):https://www.bilibili.com/video/BV1ey4y1k7jY?spm_id_from=333.999.0.0