1、创建文件example.txt,并将其拷贝到hdfs的/user/root中
./hadoop fs -put /root/example.txt /user/root
2、执行hadoop-mapreduce-examples-2.8.0.jar
./hadoop jar ../share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.0.jar wordcount /user/root/example.txt /output
3、按照搭建集群这篇配置/opt/hadoop-2.8.0/etc/hadoop/mapred-site.xml,wordcunt会卡在INFO mapreduce.Job: map 0% reduce 0%
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property
按照如上配置,则使用yarn来进行计算,那么必须启动nodemanager,
如果不使用yarn,进行mapreduce.job.tracker配置,也可以用MRv2来执行job,这样就不需要启动nodemanager:
<property>
<name>mapreduce.job.tracker</name>
<value>hdfs://hserver2:8001</value>
<final>true</final>
<property>
修改后,重新运行wordcunt
4、查看输出的统计
./hadoop fs -cat /output/part-r-00000
至此,wordcunt测试完成。