1 泊松分布
指数分布和泊松分布息息相关,所以先简单回忆下之前介绍过的泊松分布。公司楼下有家馒头店,每天早上六点到十点营业:
老板统计了一周每日卖出的馒头(为了方便计算和讲解,缩小了数据),想从中找到一些规律:
从中可以得到最简单的规律,均值:
这个规律显然不够好,如果把营业时间抽象为一根线段,把这段时间用 来表示:
然后把卖出的馒头数画在这根线段上(节约篇幅,只画出周一周二作为示意),可以看到每天卖出的馒头起伏还是很大的:
经过老板一系列的骚操作(更具体的推导请看如何理解泊松分布),最后得到每日卖出的馒头数 服从泊松分布:
泊松分布的具体表达式为:
据此可以画出每日卖出馒头数的概率分布,这个规律就比均值要精细很多了:
2 馒头卖出之间的时间间隔
下面来讨论另外一个问题,馒头卖出之间的时间间隔:
可以看出也是随机变量(也就是图中的 ),不过相对馒头卖出个数而言,时间间隔肯定是连续的随机变量。
如果知道这个时间间隔,老板也好调整自己的服务员人数(时间间隔短,那么需要的服务人员就多,反之需要的就少),优化成本结构。那么问题来了,这个时间间隔服从什么分布?
3 一天的间隔
既然都是卖馒头的问题,那么还是让我们从已知的泊松分布上想想办法。之前得到的泊松分布让我们知道了每天卖出的馒头数,所以下面按天来分析看看。
假如某一天没有卖出馒头,比如说周三吧,这意味着,周二最后卖出的馒头,和周四最早卖出的馒头中间至少间隔了一天:
当然也可能运气不好,周二也没有卖出馒头。那么卖出两个馒头的时间间隔就隔了两天,但无论如何时间间隔都是大于一天的:
而某一天没有卖出馒头的概率可以由泊松分布得出:
根据上面的分析,卖出两个馒头之间的时间间隔要大于一天,那么必然要包含没有卖出馒头的这天,所以两者的概率是相等的。如果假设随机变量为:
那么就有:
4 泊松过程
之前求出的泊松分布实在限制太大,只告诉了我们每天卖出的馒头数。不过没有关系,稍微扩展下可以得到新的函数:
通过新的这个函数就可知不同的时间段内卖出的馒头数的分布了( 时就是泊松分布):
扩展后得到的函数称为 泊松过程 ,这里涉及到比较复杂的知识,就不做推导了,感兴趣的同学可以自行根据关键字扩展学习。
5 指数分布
两次卖出馒头之间的时间间隔大于 的概率,根据之前的分析,等同于 时间内没有卖出一个馒头的概率,而后者的概率可以由泊松过程给出。至此所需的条件都齐备了,那么开始解题吧,假设随机变量:
这个随机变量的概率可以如下计算:
进而有:
这其实已经得到了 的累积分布函数了:
对其求导就可以得到概率密度函数:
这就是卖出馒头的时间间隔 的概率密度函数,也称为 指数分布 。
6 指数分布的图像
指数分布中的 是每日平均卖出的馒头数,如果 越大,也就是说每日卖出的馒头越多,那么两个馒头之间的时间间隔必然越短,这点从图像上也可以看出。
当 较小的时候,比如说 吧,也就是说一天只卖出一个馒头,那么馒头卖出间隔时间大于1的可能性就很大(下图是指数分布的概率密度函数的图像,对应的概率是曲线下面积):
而如果 较大的时候,比如说 吧,也就是说一天卖出三个馒头,那么馒头卖出间隔时间大于1的可能性已经变得很小了:
7 泊松分布与指数分布的期望
每日卖出馒头的数目 服从泊松分布,卖出馒头的时间间隔 服从指数分布:
他们的期望分别为:
根据之前的分析就比较好理解了, 的含义是平均每日卖出的馒头数,而 是每个馒头之间卖出的平均时间间隔,所以两者是倒数关系:每日卖出的越多自然间隔时间越短,每日卖出的越少自然间隔时间越长。
8 小结
还有未尽的一些解释,比如:
-
为什么指数分布常常用来描述电器寿命?
-
为什么指数分布和几何分布一样具有无记忆性?
这里就不一一解释了,感兴趣可以参加我们的《概率论与数理统计》课程,其中有更多更详尽的解释。