【机器学习】【决策树】用样本集详解:条件熵H(Y|X)的计算过程

本文详细介绍了如何计算条件熵H(Y|X),以相亲结果为分类样本空间Y,分别针对身高、房子和性格三个特征X进行计算。样本集包含8个样本,特征包括身高(high, low)、房子(no, yes)和性格(good, bad),分类结果为refuse或agree。通过Python代码展示了条件熵的计算过程。" 132985860,20036292,C++编译错误:无法将boost::filesystem3::path转换为std::string,"['C++开发', 'Boost库', '文件系统', '类型转换']
摘要由CSDN通过智能技术生成

通过此文档如果还不清楚条件熵H(Y|X)的计算过程,请毫不留情地把搬砖扔过来,我愿意接招。


此文章文档下载地址:https://download.csdn.net/download/u012421852/10322178

1. 样本数据集

样本集简介:

    样本集有8个example样本

    每个样本有3个特征(身高,房子,性格),1个分类结果refuse或者agree

    身高取值范围={high, low}

    房子取值范围={no, yes}

    性格取值范围={good, bad}

    分类标签=相亲结果={refuse,agree}

样本号

X=身高

X=房子

X=性格

Y=相亲结果

1

high

no

good

refuse

2

high

no

good

refuse

3

high

yes

good

agree

4

low

yes

good

agree

5

low

yes

good

agree

6

low

yes

bad

refuse

7

low

yes

bad

refuse

8

low

Yes

Bad

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值