scikit-learn入门到精通(二):seting和estimator

#encoding=utf-8
'''
scikit-learn的datasets是2D array.可以理解为一个多为观测的list
'''
from sklearn import datasets
iris = datasets.load_iris()
data = iris.data
data.shape
#这是一个150*4的观测数据,没有初始化为(n_samples,n_features)的格式,因此需要预处理
#下面是一个预处理例子
digits = datasets.load_digits()
digits.images.shape
import pylab as pl
pl.imshow(digits.images[-1],cmap=pl.cm.gray_r)

这里写图片描述

'''
为使用scikit-learn,把8*8的image转换为长度为64的特征向量
'''
data = digits.images.reshape((digits.images.shape[0],-1))
data.shape  #(1979,64)

'''
estimater 对象 ,需要dataset参数
estimator.fit(data)

所有的estimator的参数都可以中初始化时或通过修改属性来设置
estimator = Estimator(param1=1,param2=2)
estimator.param1  #1

获得一个训练好的estimator的参数
estimator.estimated_param_
'''
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值