'''
scikit-learn的datasets是2D array.可以理解为一个多为观测的list
'''
from sklearn import datasets
iris = datasets.load_iris()
data = iris.data
data.shape
digits = datasets.load_digits()
digits.images.shape
import pylab as pl
pl.imshow(digits.images[-1],cmap=pl.cm.gray_r)
'''
为使用scikit-learn,把8*8的image转换为长度为64的特征向量
'''
data = digits.images.reshape((digits.images.shape[0],-1))
data.shape #(1979,64)
'''
estimater 对象 ,需要dataset参数
estimator.fit(data)
所有的estimator的参数都可以中初始化时或通过修改属性来设置
estimator = Estimator(param1=1,param2=2)
estimator.param1 #1
获得一个训练好的estimator的参数
estimator.estimated_param_
'''