朴素贝叶斯分类器算法通俗讲解

本文介绍了朴素贝叶斯分类器的基础知识,包括贝叶斯决策理论、条件概率和朴素贝叶斯的两个核心假设。通过一个例子展示了如何将留言板留言分类为侮辱性和非侮辱性,详细解释了如何计算概率并训练朴素贝叶斯分类器,以及如何使用分类器进行预测。尽管朴素贝叶斯假设有时过于简化,但实际效果通常良好。
摘要由CSDN通过智能技术生成

        首先会用到贝叶斯决策理论,说一下。贝叶斯决策理论的核心思想是:选择具有最高概率的决策。例如一个点(x, y),属于类别1的概率是p1(x, y),属于类别2的概率是p2(x, y),用贝叶斯决策理论来判断它的类别:

        如果p1(x, y) > p2(x, y),那么类别1;

        如果p1(x, y) < p2(x, y),那么类别2。

 

        再说一下条件概率。计算条件概率的方法称为贝叶斯准则。贝叶斯准则告诉我们如何交换条件概率中的条件与结果,即已经p(x|c),计算p(c|x),利用好求的概率去求解难求的概率。计算公式:

      

 

        接下来我们讨论如何结合贝叶斯决策理论使用条件概率将其应用到分类器中。

        我们需要比较的是p(c1 | x, y) 和p(c2 | x, y),即(x,y)表示的数据点属于类别c1和c2的概率各是多少?直接求解这两个概率不好求解,我们利用贝叶斯准则来交换概率中条件和结果,具体的用到下面公式:

     

        利用已知的三个概率值来求解未知的概率值。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值