对朴素贝叶斯分类器的理解

(逻辑有点乱,待修改)

由李航《统计学习方法》中的第四章可得朴素贝叶斯分类器:

y=arg _{c_{k}}^{max}\textrm{} P(Y =c_{k} )\prod P(X^{(j)}=x^{(j)}|Y=c_{k})
 

式中,连乘符号是针对j的,j表示x中的第j个特征x^{(j)},不考虑连乘符号后的项,仅P(Y =C_{k} )C_{k}项可能的取值数量为K(y_{i}\in (c_{1},c_{2},c_{3},c_{4}......c_{K}))。也就是选最大值是从K个值选(先暂且这么认为)。

对于连乘项,如果采用极大似然估计(其实采用贝叶斯估计也是一样的),对P(Y = c_{k}),则有:

P(Y = c_{k})=\frac{\sum_{i=1}^{N}I(y_{i}=c_{k})}{N},k=1,2,...K

对每个C_{k}值,P(Y = c_{k})取值唯一,共有K种取值可能。

而条件概率P(X^{(j)}=a_{jl}|Y=c_{k})的极大似然估计是:

P(X^{(j)}=a_{jl}|Y=c_{k})=\frac{\sum_{i=1}^{N}I(x_{i}^{(j)} = a_{jl}, y_{i} = c_{k})}{\sum_{i=1}^{N}|(y_{i} = c_{k})}

分号下方的项中,N代表的是训练集中的样本数,如果类标记取为C_{k}后,该项变为定值。

分号上方的项中a_{jl}表示x^{(j)}中的第j个特征值可能的第l个取值,l=1,2,3,......,S_{j},共有S_{j}种取值可能。X^{(j)}=a_{jl}表示X的第j个特征取a_{jl},那么P(X^{(j)}=a_{jl}|Y=c_{k})表示在Y=c_{k}条件下,X^{(j)}=a_{jl}的概率。

其实在这里有点绕,首先要区分两个变量x^{j}x_{i}^{(j)},x^{j}表示待分类的实例x的第j个特征,而x_{i}^{(j)}表示X中第i个样本x_{i}的第j个特征,表示为x_{i}^{(j)}x_{i}^{(j)}\in (a_{j1},a_{j2},a_{j3},a_{j4},......a_{jS_{j}},)也就是说a_{jl}的取值来自训练数据集。X^{(j)}=a_{jl}表示待分类实例中的x^{j}特征取a_{jl}。至于x^{j}是否等于a_{jl}是不确定的。(解决方法:等于最好,不等于就说明x_{i}^{(j)}\in (a_{j1},a_{j2},a_{j3},a_{j4},......a_{jS_{j}},)里边没有这个特征值,此处就可以用贝叶斯估计。)

结合上两个公式,贝叶斯分类器可以化简为下式:

y=arg _{c_{k}}^{max}\textrm{} P(Y =c_{k} )\prod \frac{\sum_{i=1}^{N}I(x_{i}^{(j)} = a_{jl}, y_{i} = c_{k})}{\sum_{i=1}^{N}|(y_{i} = c_{k})}

表达的含义就是对于待分类实例x,当选择其类别为C_{k}时,按照待分类实例中各特征值x^{j}所取的值去查找训练数据集中对应位置的特征值取相同值时的概率。由此求出一个概率,C_{k}取完所有的可能取值之后,对这些取值进行排序,之后取最大值作为最后的输出值,也就是分类

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值