【TensorFlow】tf.nn.conv2d是怎样实现卷积的?

tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

除去name参数用以指定该操作的name,与方法有关的一共五个参数

第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维

第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4

第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)

第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

结果返回一个Tensor,这个输出,就是我们常说的feature map


那么TensorFlow的卷积具体是怎样实现的呢,用一些例子去解释它:

1.考虑一种最简单的情况,现在有一张3×3单通道的图像(对应的shape:[1,3,3,1]),用一个1×1的卷积核(对应的shape:[1,1,1,1])去做卷积,最后会得到一张3×3的feature map

2.增加图片的通道数,使用一张3×3五通道的图像(对应的shape:[1,3,3,5]),用一个1×1的卷积核(对应的shape:[1,1,1,1])去做卷积,仍然是一张3×3的feature map,这就相当于每一个像素点,卷积核都与该像素点的每一个通道做点积

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([1,3,3,5]))  
  2. filter = tf.Variable(tf.random_normal([1,1,5,1]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
3.把卷积核扩大,现在用3×3的卷积核做卷积,最后的输出是一个值,相当于情况2的feature map所有像素点的值求和

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([1,3,3,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
4.使用更大的图片将 情况2 的图片扩大到5×5,仍然是3×3的卷积核,令步长为1,输出3×3的feature map

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  

注意我们可以把这种情况看成情况2和情况3的中间状态,卷积核以步长1滑动遍历全图,以下x表示的位置,表示卷积核停留的位置,每停留一个,输出feature map的一个像素

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. .....  
  2. .xxx.  
  3. .xxx.  
  4. .xxx.  
  5. .....  

5.上面我们一直令参数padding的值为‘VALID’,当其为‘SAME’时,表示卷积核可以停留在图像边缘,如下,输出5×5的feature map

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. xxxxx  
  2. xxxxx  
  3. xxxxx  
  4. xxxxx  
  5. xxxxx  
6.如果卷积核有多个

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  

此时输出7张5×5的feature map

7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
此时,输出7张3×3的feature map

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. x.x.x  
  2. .....  
  3. x.x.x  
  4. .....  
  5. x.x.x  
8.如果batch值不为1,同时输入10张图

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. input = tf.Variable(tf.random_normal([10,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]


最后,把程序总结一下:

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. import tensorflow as tf  
  2. #case 2  
  3. input = tf.Variable(tf.random_normal([1,3,3,5]))  
  4. filter = tf.Variable(tf.random_normal([1,1,5,1]))  
  5.   
  6. op2 = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
  7. #case 3  
  8. input = tf.Variable(tf.random_normal([1,3,3,5]))  
  9. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  10.   
  11. op3 = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
  12. #case 4  
  13. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  14. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  15.   
  16. op4 = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
  17. #case 5  
  18. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  19. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  20.   
  21. op5 = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  
  22. #case 6  
  23. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  24. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  25.   
  26. op6 = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  
  27. #case 7  
  28. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  29. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  30.   
  31. op7 = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
  32. #case 8  
  33. input = tf.Variable(tf.random_normal([10,5,5,5]))  
  34. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  35.   
  36. op8 = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
  37.   
  38. init = tf.initialize_all_variables()  
  39. with tf.Session() as sess:  
  40.     sess.run(init)  
  41.     print("case 2")  
  42.     print(sess.run(op2))  
  43.     print("case 3")  
  44.     print(sess.run(op3))  
  45.     print("case 4")  
  46.     print(sess.run(op4))  
  47.     print("case 5")  
  48.     print(sess.run(op5))  
  49.     print("case 6")  
  50.     print(sess.run(op6))  
  51.     print("case 7")  
  52.     print(sess.run(op7))  
  53.     print("case 8")  
  54.     print(sess.run(op8))  
因为是随机初始化,我的结果是这样的:

[python]  view plain  copy
  在CODE上查看代码片 派生到我的代码片
  1. case 2  
  2. [[[[-0.64064658]  
  3.    [-1.82183945]  
  4.    [-2.63191342]]  
  5.   
  6.   [[ 8.05008984]  
  7.    [ 1.66023612]  
  8.    [ 2.53465152]]  
  9.   
  10.   [[-3.51703644]  
  11.    [-5.92647743]  
  12.    [ 0.55595356]]]]  
  13. case 3  
  14. [[[[ 10.53139973]]]]  
  15. case 4  
  16. [[[[ 10.45460224]  
  17.    [  6.23760509]  
  18.    [  4.97157574]]  
  19.   
  20.   [[  3.05653667]  
  21.    [-11.43907833]  
  22.    [ -2.05077457]]  
  23.   
  24.   [[ -7.48340607]  
  25.    [ -0.90697062]  
  26.    [  3.27171206]]]]  
  27. case 5  
  28. [[[[  5.30279875]  
  29.    [ -2.75329947]  
  30.    [  5.62432575]  
  31.    [-10.24609661]  
  32.    [  0.12603235]]  
  33.   
  34.   [[  0.2113893 ]  
  35.    [  1.73748684]  
  36.    [ -3.04372549]  
  37.    [ -7.2625494 ]  
  38.    [-12.76445198]]  
  39.   
  40.   [[ -1.57414591]  
  41.    [ -3.39802694]  
  42.    [ -6.01582575]  
  43.    [ -1.73042905]  
  44.    [ -3.07183361]]  
  45.   
  46.   [[  1.41795194]  
  47.    [ -2.02815866]  
  48.    [-17.08983231]  
  49.    [ 11.98958111]  
  50.    [  2.44879103]]  
  51.   
  52.   [[  0.29902667]  
  53.    [ -3.19712877]  
  54.    [ -2.84978414]  
  55.    [ -2.71143317]  
  56.    [  5.99366283]]]]  
  57. case 6  
  58. [[[[ 12.02504349   4.35077286   2.67207813   5.77893162   6.98221684  
  59.      -0.96858567  -8.1147871 ]  
  60.    [ -0.02988982  -2.52141953  15.24755192   6.39476395  -4.36355495  
  61.      -2.34515095   5.55743504]  
  62.    [ -2.74448752  -1.62703776  -6.84849405  10.12248802   3.7408421  
  63.       4.71439075   6.13722801]  
  64.    [  0.82365227  -1.00546622  -3.29460764   5.12690163  -0.75699937  
  65.      -2.60097408  -8.33882809]  
  66.    [  0.76171923  -0.86230004  -6.30558443  -5.58426857   2.70478535  
  67.       8.98232937  -2.45504045]]  
  68.   
  69.   [[  3.13419819 -13.96483231   0.42031103   2.97559547   6.86646557  
  70.      -3.44916964  -0.10199898]  
  71.    [ 11.65359879  -5.2145977    4.28352737   2.68335319   3.21993709  
  72.      -6.77338028   8.08918095]  
  73.    [  0.91533852  -0.31835344  -1.06122255  -9.11237717   5.05267143  
  74.       5.6913228   -5.23855162]  
  75.    [ -0.58775592  -5.03531456  14.70254898   9.78966522 -11.00562763  
  76.      -4.08925819  -3.29650426]  
  77.    [ -2.23447251  -0.18028721  -4.80610704  11.2093544   -6.72472  
  78.      -2.67547607   1.68422937]]  
  79.   
  80.   [[ -3.40548897  -9.70355129  -1.05640507  -2.55293012  -2.78455877  
  81.     -15.05377483  -4.16571808]  
  82.    [ 13.66925812   2.87588191   8.29056358   6.71941566   2.56558466  
  83.      10.10329056   2.88392687]  
  84.    [ -6.30473804  -3.3073864   12.43273926  -0.66088223   2.94875336  
  85.       0.06056046  -2.78857946]  
  86.    [ -7.14735603  -1.44281793   3.3629775   -7.87305021   2.00383091  
  87.      -2.50426936  -6.93097973]  
  88.    [ -3.15817571   1.85821593   0.60049552  -0.43315536  -4.43284273  
  89.       0.54264796   1.54882073]]  
  90.   
  91.   [[  2.19440389  -0.21308756  -4.35629082  -3.62100363  -0.08513772  
  92.      -0.80940366   7.57606506]  
  93.    [ -2.65713739   0.45524287 -16.04298019  -5.19629049  -0.63200498  
  94.       1.13256514  -6.70045137]  
  95.    [  8.00792599   4.09538221  -6.16250181   8.35843849  -4.25959206  
  96.      -1.5945878   -7.60996151]  
  97.    [  8.56787586   5.85663748  -4.38656425   0.12728286  -6.53928804  
  98.       2.3200655    9.47253895]  
  99.    [ -6.62967777   2.88872099  -2.76913023  -0.86287498  -1.4262073  
  100.      -6.59967232   5.97229099]]  
  101.   
  102.   [[ -3.59423327   4.60458899  -5.08300591   1.32078576   3.27156973  
  103.       0.5302844   -5.27635145]  
  104.    [ -0.87793881   1.79624665   1.66793108  -4.70763969  -2.87593603  
  105.      -1.26820421  -7.72825718]  
  106.    [ -1.49699068  -3.40959787  -1.21225107  -1.11641395  -8.50123024  
  107.      -0.59399474   3.18010235]  
  108.    [ -4.4249506   -0.73349547  -1.49064219  -6.09967899   5.18624878  
  109.      -3.80284953  -0.55285597]  
  110.    [ -1.42934585   2.76053572  -5.19795799   0.83952439  -0.15203482  
  111.       0.28564462   2.66513705]]]]  
  112. case 7  
  113. [[[[  2.66223097   2.64498258  -2.93302107   3.50935125   4.62247562  
  114.       2.04241085  -2.65325522]  
  115.    [ -0.03272867  -1.00103927  -4.3691597    2.16724801   7.75251007  
  116.      -4.6788125   -0.89318085]  
  117.    [  4.74175072  -0.80443329  -1.02710629  -6.68772554   4.57605314  
  118.      -3.72993755   4.79951382]]  
  119.   
  120.   [[  5.249547     8.92288399   7.10703182  -9.10498428  -7.43814278  
  121.      -8.69616318   1.78862095]  
  122.    [  7.53669024 -14.52316284  -2.55870199  -1.11976743   3.81035042  
  123.       2.45559502  -2.35436153]  
  124.    [  3.93275881   5.11939669  -4.7114296  -11.96386623   2.11866689  
  125.       0.57433248  -7.19815397]]  
  126.   
  127.   [[  0.25111672   1.40801668   1.28818977  -2.64093828   0.98182392  
  128.       3.69512987   4.78833389]  
  129.    [  0.30391204 -10.26406097   6.05877018  -6.04775047   8.95922089  
  130.       0.80235004  -5.4520669 ]  
  131.    [ -7.24697018  -2.33498096 -10.20039558  -1.24307609   3.99351597  
  132.      -8.1029129    2.44411373]]]]  
  133. case 8  
  134. [[[[ -6.84037447e+00   1.33321762e-01  -5.09891272e+00   5.55682087e+00  
  135.       8.22002888e+00  -4.94586229e-02   4.19012117e+00]  
  136.    [  6.79884481e+00   1.21652853e+00  -5.69557810e+00  -1.33555794e+00  
  137.       3.24849486e-01   4.88868570e+00  -3.90220714e+00]  
  138.    [ -3.53190374e+00  -4.11765718e+00   4.54340839e+00   1.85549557e+00  
  139.      -3.38682461e+00   2.62719369e+00  -4.98658371e+00]]  
  140.   
  141.   [[ -9.86354351e+00  -6.76713943e+00   3.62617874e+00  -6.16720629e+00  
  142.       1.96754158e+00  -4.54203081e+00  -1.37485743e+00]  
  143.    [ -1.76783955e+00   2.35163045e+00  -2.21175838e+00   3.83091879e+00  
  144.       3.16964531e+00  -7.58307219e+00   4.71943617e+00]  
  145.    [  1.20776439e+00   4.86006308e+00   1.04233503e+01  -7.82327271e+00  
  146.       5.39195156e+00  -6.31672382e+00   1.35577369e+00]]  
  147.   
  148.   [[ -3.65947580e+00  -1.98961139e+00   7.53771305e+00   2.79224634e-01  
  149.      -2.90050888e+00  -3.57466817e+00  -6.33232594e-01]  
  150.    [  5.89931488e-01   2.83219159e-01  -1.65850735e+00  -6.45545387e+00  
  151.      -1.17044592e+00   1.40343285e+00   5.74970901e-01]  
  152.    [ -8.58810043e+00  -1.25172977e+01   6.84177876e-01   3.80004168e+00  
  153.      -1.54420209e+00  -3.32161427e+00  -1.05423713e+00]]]  
  154.   
  155.   
  156.  [[[ -4.82677078e+00   3.11167526e+00  -4.32694483e+00  -4.77198696e+00  
  157.       2.32186103e+00   1.65402293e-01  -5.32707453e+00]  
  158.    [  3.91779566e+00   6.27949667e+00   2.32975650e+00  -1.06336937e+01  
  159.       4.44044876e+00   8.08288479e+00  -5.83346319e+00]  
  160.    [ -2.82141399e+00  -9.16103745e+00   6.98908520e+00  -5.66505909e+00  
  161.      -2.11039782e+00   2.27499461e+00  -5.74120235e+00]]  
  162.   
  163.   [[  6.71680808e-01  -4.01104212e+00  -4.61760712e+00   1.02667952e+01  
  164.      -8.21200657e+00  -8.57054043e+00   1.71461976e+00]  
  165.    [  2.40794683e+00  -2.63071585e+00   9.68963623e+00  -4.51778412e+00  
  166.      -3.91073084e+00  -5.91874409e+00   9.96273613e+00]  
  167.    [  2.67705870e+00   2.85607010e-01   2.45853162e+00   4.44810390e+00  
  168.      -2.11300468e+00  -5.77583075e+00   2.83322239e+00]]  
  169.   
  170.   [[ -8.21949577e+00  -7.57754421e+00   3.93484974e+00   2.26189137e+00  
  171.      -3.49395227e+00  -6.40283823e+00  -6.00450039e-01]  
  172.    [  2.95964479e-02  -1.19976890e+00   5.38537979e+00   4.62369967e+00  
  173.       3.89780998e+00  -6.36872959e+00   7.12107182e+00]  
  174.    [ -8.85006547e-01   1.92706418e+00   3.26668215e+00   2.03566647e+00  
  175.       1.44209075e+00  -6.48463774e+00  -8.33671093e-02]]]  
  176.   
  177.   
  178.  [[[ -2.64583921e+00   3.86011934e+00   4.18198538e+00   3.50338411e+00  
  179.       6.35944796e+00  -4.28423309e+00   4.87355423e+00]  
  180.    [  4.42271233e+00   3.92883778e+00  -5.59371090e+00   4.98251200e+00  
  181.      -3.45068884e+00   2.91921115e+00   1.03779554e+00]  
  182.    [  1.36162388e+00  -1.06808968e+01  -3.92534947e+00   1.85111761e-01  
  183.      -4.87255526e+00   1.66666222e+01  -1.04918976e+01]]  
  184.   
  185.   [[ -4.34632540e+00   1.74614882e+00  -2.89012527e+00  -8.74067783e+00  
  186.       5.06610107e+00   1.24989772e+00  -3.06433105e+00]  
  187.    [  2.49973416e+00   2.14041996e+00  -4.71008825e+00   7.39326143e+00  
  188.       3.94770741e+00   8.23049164e+00  -1.67046225e+00]  
  189.    [ -2.94665837e+00  -4.58543825e+00   7.21219683e+00   1.09780006e+01  
  190.       5.17258358e+00   7.90257788e+00  -2.13929534e+00]]  
  191.   
  192.   [[  4.20402241e+00  -2.98926830e+00  -3.89006615e-01  -8.16001511e+00  
  193.      -2.38355541e+00   1.42584383e+00  -5.46632290e+00]  
  194.    [  5.52395058e+00   5.09255171e+00  -1.08742390e+01  -4.96262169e+00  
  195.      -1.35298109e+00   3.65663052e-01  -3.40589857e+00]  
  196.    [ -6.95647061e-01  -4.12855625e+00   2.66609401e-01  -9.39565372e+00  
  197.      -3.85058141e+00   2.51248240e-01  -5.77149725e+00]]]  
  198.   
  199.   
  200.  [[[  1.22103825e+01   5.72040796e+00  -3.56989503e+00  -1.02248180e+00  
  201.      -5.20942688e-01   7.15008640e+00   3.43482435e-01]  
  202.    [  6.01409674e+00  -1.59511256e+00  -6.48080063e+00  -1.82889538e+01  
  203.      -1.03537569e+01  -1.48270035e+01  -5.26662111e+00]  
  204.    [  5.51758146e+00  -2.91831636e+00   3.75461340e-01  -9.23893452e-02  
  205.      -9.22101116e+00   7.16952372e+00  -6.86479330e-01]]  
  206.   
  207.   [[ -3.03645611e+00   6.68620300e+00  -3.31973934e+00  -4.91346550e+00  
  208.       9.20719814e+00  -2.55552864e+00  -2.16087699e-02]  
  209.    [ -3.02986956e+00  -1.29726543e+01   1.53023469e+00  -8.19733238e+00  
  210.       5.68085670e+00  -1.72856820e+00  -4.69369221e+00]  
  211.    [ -6.67176056e+00   8.76355553e+00   2.18996063e-01  -4.38777208e+00  
  212.      -6.35764122e-01  -1.37812555e+00  -4.41474581e+00]]  
  213.   
  214.   [[  2.25345469e+00   1.02142305e+01  -1.71714854e+00  -5.29060185e-01  
  215.       2.27982092e+00  -8.75302982e+00   7.13998675e-02]  
  216.    [ -6.67547846e+00   3.67722750e+00  -3.44172812e+00   5.69674826e+00  
  217.      -2.28723526e+00   5.92991543e+00   5.53608060e-01]  
  218.    [ -1.01174891e-01  -2.73731589e+00  -4.06187654e-01   6.54158068e+00  
  219.       2.59603882e+00   2.99202776e+00  -2.22350287e+00]]]  
  220.   
  221.   
  222.  [[[ -1.81271315e+00   2.47674489e+00  -2.90284491e+00   1.34291325e+01  
  223.       7.69864845e+00  -1.27134466e+00   3.02233839e+00]  
  224.    [ -2.08135307e-01   1.03206539e+00   1.90775347e+00   9.01517391e+00  
  225.      -3.52140331e+00   9.05393791e+00  -9.12732124e-01]  
  226.    [  1.12128162e+00   5.98179293e+00  -2.27206993e+00  -5.21281779e-01  
  227.       6.20835352e+00   3.73474598e+00   1.18961644e+00]]  
  228.   
  229.   [[  3.17242837e+00  -6.00571585e+00   2.37661076e+00  -5.64483738e+00  
  230.      -6.45412731e+00   8.75251675e+00   7.33790398e-02]  
  231.    [  3.08957529e+00  -1.06855690e-01  -5.16810894e-01  -9.41085911e+00  
  232.       8.23878098e+00   6.79738426e+00  -1.23478663e+00]  
  233.    [ -9.20640087e+00  -6.82801771e+00  -5.96975613e+00   7.61030674e-01  
  234.      -4.35995817e+00  -3.54818010e+00  -2.56281614e+00]]  
  235.   
  236.   [[  4.69872713e-01   8.36402321e+00   5.37103415e-01  -1.68033957e-01  
  237.      -3.21731424e+00  -7.34270859e+00  -3.14253521e+00]  
  238.    [  6.69656086e+00  -5.27954197e+00  -8.57314682e+00   4.84328842e+00  
  239.      -2.96387672e+00   2.47114658e+00   2.85376692e+00]  
  240.    [ -7.86032295e+00  -7.18845367e+00  -3.27161223e-01   9.27330971e+00  
  241.      -6.14093494e+00  -4.49041557e+00   3.47160912e+00]]]  
  242.   
  243.   
  244.  [[[ -1.89188433e+00   5.43082857e+00   6.04252160e-01   6.92894220e+00  
  245.       8.59178162e+00   1.02003086e+00   5.31300211e+00]  
  246.    [ -8.97491455e-01   6.52438164e+00  -4.43710327e+00   7.10509634e+00  
  247.       8.84234428e+00   3.08552694e+00   2.78152227e+00]  
  248.    [ -9.40537453e-02   2.34666920e+00  -5.57496691e+00  -8.62346458e+00  
  249.      -1.32807600e+00  -8.12027454e-02  -9.00946975e-01]]  
  250.   
  251.   [[ -3.53673506e+00   8.93675327e+00   3.27456236e-01  -3.41519475e+00  
  252.       7.69804525e+00  -5.18698692e+00  -3.96991730e+00]  
  253.    [  1.99988627e+00  -9.16149998e+00  -7.49944544e+00   5.02162695e-01  
  254.       3.57059622e+00   9.17566013e+00  -1.77589107e+00]  
  255.    [ -1.18147678e+01  -7.68992901e+00   1.88449645e+00   2.77643538e+00  
  256.      -1.11342735e+01  -3.12916255e+00  -3.34161663e+00]]  
  257.   
  258.   [[ -3.62668943e+00  -3.10993242e+00   3.60834384e+00   4.69678783e+00  
  259.      -1.73794723e+00  -1.27035933e+01   3.65882218e-01]  
  260.    [ -8.97550106e+00  -4.33533072e-01   4.41743970e-01  -5.83433771e+00  
  261.      -4.85818958e+00   9.56629372e+00   3.56375504e+00]  
  262.    [ -6.87092066e+00   1.96412420e+00   5.14182663e+00  -8.97769547e+00  
  263.       3.61136627e+00   5.91387987e-01  -2.95224571e+00]]]  
  264.   
  265.   
  266.  [[[ -1.11802626e+00   3.24175072e+00   5.94067669e+00   9.29727936e+00  
  267.       9.28199863e+00  -4.80889034e+00   6.96202660e+00]  
  268.    [  7.23959684e+00   3.11182523e+00   1.84116721e+00   5.12095928e-01  
  269.      -7.65049171e+00  -4.05325556e+00   5.38544941e+00]  
  270.    [  4.66621685e+00  -1.61665392e+00   9.76448345e+00   2.38519001e+00  
  271.      -2.06760812e+00  -6.03633642e-01   3.66192675e+00]]  
  272.   
  273.   [[  1.52149725e+00  -1.84441996e+00   4.87877655e+00   2.96750760e+00  
  274.       2.37311172e+00  -2.98487616e+00   9.98114228e-01]  
  275.    [  9.20035839e+00   5.24396753e+00  -2.57312679e+00  -7.26040459e+00  
  276.      -1.17509928e+01   6.85688591e+00   3.37383580e+00]  
  277.    [  6.17629957e+00  -5.15294194e-01  -1.64212489e+00  -5.70274448e+00  
  278.      -2.36294913e+00   2.60432816e+00   2.63957453e+00]]  
  279.   
  280.   [[  7.91168213e-03  -1.15018034e+00   3.05471039e+00   3.31086922e+00  
  281.       5.35744762e+00   1.14832592e+00   9.56500292e-01]  
  282.    [  4.86464739e+00   5.37348413e+00   1.42920148e+00   1.62809372e+00  
  283.       2.61656570e+00   7.88479471e+00  -6.09324336e-01]  
  284.    [  7.71319962e+00  -1.73930550e+00  -2.99925613e+00  -3.14857435e+00  
  285.       3.19194889e+00   1.70928288e+00   4.90955710e-01]]]  
  286.   
  287.   
  288.  [[[ -1.79046512e+00   8.54369068e+00   1.85044312e+00  -9.88471413e+00  
  289.       9.52995300e-01  -1.34820042e+01  -1.13713551e+01]  
  290.    [  8.37582207e+00   6.64692163e+00  -3.22429276e+00   3.37997460e+00  
  291.       3.91468263e+00   6.96061993e+00  -1.18029404e+00]  
  292.    [ -2.13278866e+00   4.36152029e+00  -4.14593410e+00  -2.15160155e+00  
  293.       1.90767622e+00   1.16321917e+01  -3.72644544e+00]]  
  294.   
  295.   [[ -5.03508925e-01  -6.33426476e+00  -1.06393566e+01  -6.49301624e+00  
  296.      -6.31036520e+00   3.13485146e+00  -5.77433109e-01]  
  297.    [  7.41444230e-01  -4.87326956e+00  -5.98253345e+00  -9.14121056e+00  
  298.      -8.64077091e-01   2.06696177e+00  -7.59688473e+00]  
  299.    [  1.38767815e+00   1.84418947e-01   5.72539902e+00  -2.07557893e+00  
  300.       9.70911503e-01   1.16765432e+01  -1.40111232e+00]]  
  301.   
  302.   [[ -1.21869087e+00   2.44499159e+00  -1.65706706e+00  -6.19807529e+00  
  303.      -5.56950712e+00  -1.72372568e+00   3.62687564e+00]  
  304.    [  2.23708963e+00  -2.87862611e+00   2.71666467e-01   4.35115099e+00  
  305.      -8.85548592e-01   2.91860628e+00   8.10848951e-01]  
  306.    [ -5.33635712e+00   7.15072036e-01   5.21240902e+00  -3.11152220e+00  
  307.       2.01623154e+00  -2.28398323e-01  -3.23233747e+00]]]  
  308.   
  309.   
  310.  [[[  3.77991509e+00   5.53513861e+00  -1.82022047e+00   4.22430277e+00  
  311.       5.60331726e+00  -4.28308249e+00   4.54524136e+00]  
  312.    [ -5.30983162e+00  -3.45605731e+00   2.69374561e+00  -6.16836596e+00  
  313.      -9.18601036e+00  -1.58697796e+00  -5.73809910e+00]  
  314.    [  2.18868661e+00   6.96338892e-01   1.88057957e+01  -4.21353197e+00  
  315.       1.20818818e+00   2.85108542e+00   6.62180042e+00]]  
  316.   
  317.   [[  1.01285219e+01  -4.86819077e+00  -2.45067930e+00   7.50106812e-01  
  318.       4.37201977e+00   4.78472042e+00   1.19103444e+00]  
  319.    [ -3.26395583e+00  -5.59358537e-01   1.52001972e+01  -5.93994498e-01  
  320.      -1.49040818e+00  -7.02547312e+00  -1.29268813e+00]  
  321.    [  1.02763653e+01   1.31108007e+01  -2.91605043e+00  -1.37688947e+00  
  322.       3.33029580e+00   1.96966705e+01   2.55259371e+00]]  
  323.   
  324.   [[  4.58397627e+00  -3.19160700e+00  -6.51985502e+00   1.02908373e+01  
  325.      -4.17618275e+00  -9.69347239e-01   7.46259832e+00]  
  326.    [  6.09876537e+00   1.33044279e+00   5.04027081e+00  -6.87740147e-01  
  327.       4.14770365e+00  -2.26751328e-01   1.54876924e+00]  
  328.    [  2.70127630e+00  -1.59834003e+00  -1.82587504e+00  -5.92888784e+00  
  329.      -5.65038967e+00  -6.46078014e+00  -1.80765367e+00]]]  
  330.   
  331.   
  332.  [[[ -1.57899165e+00   3.39969063e+00   1.02308102e+01  -7.77082300e+00  
  333.      -8.02129686e-01  -3.67387819e+00  -1.37204361e+00]  
  334.    [  3.93093729e+00   6.17498016e+00  -1.41695750e+00  -1.26903206e-01  
  335.       2.18985319e+00   5.83657503e-01   7.39725351e-01]  
  336.    [  5.53898287e+00   2.22283316e+00  -1.10478985e+00   2.68644023e+00  
  337.      -2.59913635e+00   3.74231935e+00   4.85016155e+00]]  
  338.   
  339.   [[  4.05368614e+00  -3.74058294e+00   7.32348633e+00  -1.17656231e+00  
  340.       3.71810269e+00  -1.63957381e+00   9.91670132e-01]  
  341.    [ -1.29317007e+01   1.12296543e+01  -1.13844347e+01  -7.13933802e+00  
  342.      -8.65884399e+00  -5.56065178e+00  -1.46718264e+00]  
  343.    [ -8.08718109e+00  -1.98826480e+00  -4.07488203e+00   2.06440473e+00  
  344.       1.13524094e+01   5.68703651e+00  -2.18706942e+00]]  
  345.   
  346.   [[  1.51166654e+00  -6.84034204e+00   9.33474350e+00  -4.80931902e+00  
  347.      -6.24172688e-02  -4.21381521e+00  -5.73313046e+00]  
  348.    [ -1.35943902e+00   5.27799511e+00  -3.77813816e+00   6.88291168e+00  
  349.       4.35068893e+00  -1.02540245e+01   8.86861205e-01]  
  350.    [ -4.49999619e+00  -2.97630525e+00  -6.18604183e-01  -2.49702692e+00  
  351.      -6.76169348e+00  -2.55930996e+00  -2.71291423e+00]]]]  


转自http://blog.csdn.net/mao_xiao_feng/article/details/53444333

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值