使用onnxruntime-gpu 模型推理

1.安装onnxruntime-gpu

新版的onnxruntime-gpu 即支持gpu的推理,也支持cpu的推理。

卸载旧的1.7.1 cpu版本,安装新的gpu版本:

pip uninstall onnxruntime
pip install onnxruntime-gpu

检查是否安装成功:

>>> import onnxruntime
>>> onnxruntime.__version__
'1.10.0'
>>> onnxruntime.get_device()
'GPU'
>>> onnxruntime.get_available_providers()
['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']

2.修改推理代码

在推理代码上增加 providers参数,选择推理的框架。看自己支持哪个就选择自己支持的就可以了。

session = onnxruntime.InferenceSession('yolov5s.onnx', None)
# 改为:
session = onnxruntime.InferenceSession('yolov5s.onnx', 
        providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'])

如果运行推理代码出现 Tensorrt, CUDA都无法推理,如下所示,则是自己的 ONNX Runtime, TensorRT, CUDA 版本没对应正确 。

2022-08-09 15:38:31.386436528 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:509 CreateExecutionProviderInstance] Failed to create TensorrtExecutionProvider. Please reference https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html#requirements to ensure all dependencies are met.

对应版本如下 :

### ONNX Runtime GPU 版本安装 为了使用 `onnxruntime-gpu` 进行推理,首先需要确保环境中已正确配置 CUDA 和 cuDNN 库。接着可以通过 pip 安装特定于 GPUONNX Runtime 软件包[^1]。 ```bash pip install onnxruntime-gpu ``` ### 加载模型并执行推理 一旦环境准备就绪,可以加载一个已经转换成 ONNX 格式的模型文件,并通过 ONNX Runtime 执行推理操作。下面是一个简单的 Python 例子来展示这一过程: ```python import numpy as np import onnxruntime as ort from PIL import Image, ImageOps import torchvision.transforms.functional as TF # 创建会话选项以启用GPU加速 sess_options = ort.SessionOptions() sess_options.enable_cuda = True # 初始化Session对象时指定使用GPU设备 session = ort.InferenceSession("model.onnx", sess_options=sess_options) # 准备输入数据 (这里假设模型接受图像作为输入) image_path = "example.jpg" img = Image.open(image_path).convert('RGB') preprocessed_img = ImageOps.fit(img, (224, 224), Image.ANTIALIAS) tensor = TF.to_tensor(preprocessed_img)[None,:,:,:] # 将numpy数组转化为适合ONNX运行时使用的格式 input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name result = session.run([output_name], {input_name: tensor.numpy()})[0] print(result) ``` 这段代码展示了如何设置会话参数以利用 GPU 来提高性能以及怎样调用 `InferenceSession` 对象来进行预测。注意,在创建 Session 实例之前定义了 `enable_cuda=True` 参数,这告诉 ONNX Runtime 使用可用的 NVIDIA 显卡资源而不是 CPU[^2]。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liguiyuan112

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值