由椭圆的公式(1)可得,确定一个椭圆需要5个参数,a,b 为椭圆的长轴和段轴,P,Q 为椭圆中心坐标,θ为椭圆的旋转角度。如果用传统的Hough变换方法,参数空间需要五维。这种方法在计算过程中所耗费的时间和空间资源是惊人的,根本无法应用于实际。为此,人们提出了很多新的改进算法。
改进算法主要分为两种:
- 1)随机Hough变换(RHT),采用多到一的映射,但是随机采样会带来大量无效的计算,当点数很大时,算法的性能急剧下降。
- 2)利用椭圆的几何特征降低参数的维度。
本文所提出的椭圆检测方法也是基于第二种方法。在讲该方法之前,先引入椭圆的一个几何定理:
定理 设平面上有一个椭圆,点 c 为椭圆中心,任取平面上一点 p(不同于点 c),点 p 距椭圆上点的最大距离一 定大于点 c 距椭圆上点的最大距离。
该定理是该方法的核心思想,也可表达为:椭圆中心(P,Q)是平面上所有点中,距离椭圆轮廓上点最大距离最小的点
利用这一几何性质,降低Hough 参数空间的维度。这句话听起来比较别扭,意思很简单。
通俗的说,就是计算 图像中每一点与椭圆(椭圆边界)最远的距离L,其中,L最小的点就是椭圆的中心,L就是椭圆的短轴a .
算法的具体步骤:
- 1)首先对图像进行边缘检测,得到二值化的边缘轮廓图,将边缘图上的点坐标存入数组 A。
- 2)对图像上的每一点, 计算与上一步所得数组 A 中点的距离,得到每一点距数组 A 中点的最大距离,所有点中最大距离最小的点,即是椭圆中心(p, q),该最大距离即是椭圆长轴长度 a。
- 3)将数组A中每一点的数值和刚才得到的3个椭圆参数p、q、a 代入椭圆方程 (1)。
- 4)在二维参数空间上对参数 b、θ 进行统计,得到峰值超过一定阈值的一组参数即为椭圆。
实验结果:
结果分析:本文运用了椭圆的几何性质,把hough参数空间减少到2维。减少了运算量。由于第一步要得到椭圆的轮廓图,如果,图像中几个椭圆有重叠部分,无法保证提取的轮廓是一个椭圆,则无法检测出椭圆。
openCV代码(VS2010+opencv2.4.11):http://download.csdn.net/detail/u012507022/9405763
Matlab代码:
clc
clear all
I = imread('22.png');
[m,n,L] = size(I); %m图像的高度,n图像的宽度,L通道数
if L>1
I = rgb2gray(I);
end
BW1 = edge(I,'sobel'); %自动选择阈值用Sobel算子进行边缘检测(二值化)
figure(1)
subplot(121)
imshow(BW1); title('边缘检测');
se = strel('square',2);
BW=imdilate(BW1,se);%图像A1被结构元素B膨胀
hough_circle=zeros(m,n,3);
[Limage, num] = bwlabel(BW,8); %num 连通区域个数
for N=1:num
%[rows,cols] = find(BW); % 找出二值图中的所有非零元素,并将这些元素的线性索引值返回到[rows,cols] 即找出边缘
[rows,cols] = find(Limage==N); % 找出二值图中的所有非零元素,并将这些元素的线性索引值返回到[rows,cols] 即找出边缘
pointL=length(rows); %非零元素个数,椭圆的周长
max_distan=zeros(m,n);
distant=zeros(1,pointL);
for i=1:m
for j=1:n
for k=1:pointL
distant(k)=sqrt((i-rows(k))^2+(j-cols(k))^2); %计算所有点 到椭圆边界的点的距离
end
max_distan(i,j)=max(distant); %(i,j)点到椭圆边界的最大距离
end
end
min_distan=min(min(max_distan)); %图像中所有的点到椭圆边界最大距离 的最小值,这个最小值对应的坐标位置 就是椭圆的中心。
[center_yy,center_xx] = find(min_distan==max_distan); %检索出椭圆中心的位置,
center_y=(min(center_yy)+max(center_yy))/2; %由于计算误差,椭圆中心可能是一簇点,所以选择中心点
center_x=(min(center_xx)+max(center_xx))/2; %center_x,center_y为椭圆的中心
a=min_distan; %a为椭圆的长轴
%% 下面进行Hough变换 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hough_space = zeros(round(a+1),180); %Hough空间
for k=1:pointL
for w=1:180 %theta
G=w*pi/180; %角度转换为弧度
XX=((cols(k)-center_x)*cos(G)+(rows(k)-center_y)*sin(G))^2/(a^2);
YY=(-(cols(k)-center_x)*sin(G)+(rows(k)-center_y)*cos(G))^2;
B=round(sqrt(abs(YY/(1-XX)))+1);
if(B>0&&B<=a) % 计算时,B的值可能很大,这里进行异常处理
hough_space(B,w)=hough_space(B,w)+1;
end
end
end
%% 搜索超过阈值的聚集点
max_para = max(max(max(hough_space))); % 找出累积最大值
[bb,ww] = find(hough_space>=max_para); %找出累积最大值在hough_space位置坐标(坐标值就是b和 theta)
if(max_para<=pointL*0.33*0.25) % 如果累积最大值 不足一定的阈值 则判断不存在椭圆
disp('No ellipse');
return ;
end
b=max(bb); % b为椭圆的短轴
W=min(ww); % %theta
theta=W*pi/180;
%% 标记椭圆
for k=1:pointL
XXX=((cols(k)-center_x)*cos(theta)+(rows(k)-center_y)*sin(theta))^2/(a^2);
YYY=(-(cols(k)-center_x)*sin(theta)+(rows(k)-center_y)*cos(theta))^2/(b^2);
if((XXX+YYY)<=1) %实心椭圆
%if((XXX+YYY)<=1.1&&(XXX+YYY)>=0.99) % 椭圆轮廓
hough_circle(rows(k),cols(k),1) = 255;
end
end
end
subplot(122)
imshow(hough_circle);title('检测结果');title('检测结果');
参考文献:
[1] 周 祥,孔晓东,曾贵华.一种新的基于 Hough 变换的椭圆轮廓检测方法