相关性分析

随机变量之间的相关关系的分类:

  1. 相关方向:正相关和负相关
  2. 相关形式:线性相关和非线性相关
  3. 相关程度:完全相关、不完全相关和不相关
  4. 按照影响因素的多少:单相关和复相关

单相关的影响因素是单个变量,复相关的影响因素是多个变量;

偏相关指的是控制其他的变量不变,只研究两个变量之间的关系。

5种常用的相关分析方法分类:

  1. 图表相关性分析:折线图和散点图。

折线图:与时间或类似时间的因素作为横坐标,另外两个变量分别作为纵坐标,画出两条折线,观察这两条折线之间的变化趋势,看是否符合相关关系。

散点图:两个变量一个当做x,另一个做y,观察趋势

2.协方差和协方差矩阵

如果两组数据的变化趋势一致,协方差就是正值。如果变化趋势相反,协方差就是负值。如果两个变量独立,协方差就是0。

 

如果是三组数据,就需要用协方差矩阵。

 

3.相关系数

相关系数是反应变量密切程度的指标,取值在-1到1之间,1表示两个变量完全线性相关,-1表示两个变量完全负相关,0表示两个变量不相关。数据越趋近于0,表示相关关系越弱。

 

其中rxy表示样本相关系数,Sxy表示样本协方差,Sx表示x的标准差。由于是样本协方差和样本标准差,因此分母使用的是n-1。

 

 

4.一元回归及多元回归

 

 

上面是两个变量,下面是多个变量:

 

5.信息熵及互信息

影响因素不止是数值形式,可能还有一些其他的形式,可能是特征值。

度量这些文本特征值相关关系的方法就是互信息。

总结:图标方法更为直观,相关系数方法可以看到两两变量的相关性,回归方程可以对相关系数进行提炼,并生成模型进行预测,互信息可以对文本类特征的相关关系进行度量。

详细可以参考:http://bluewhale.cc/2016-06-30/analysis-of-correlation.html

### CIBERSORT 相关性分析方法 #### 安装与配置 为了使用 CIBERSORT 进行相关性分析,首先需要准备好必要的软件工具和依赖项。通常情况下,CIBERSORT 的运行基于 R 或 Python 编程环境。 对于 R 用户来说,可以利用 Bioconductor 来安装 `cibersort` 包: ```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("cibersort") library(cibersort) ``` Python 用户则可以通过 pip 工具来获取相应的库支持: ```bash pip install cibersortx ``` #### 准备输入文件 在执行 CIBERSORT 分析之前,需准备两个主要类型的输入文件:一个是目标样本的基因表达矩阵;另一个是由用户定义或从已有研究中获得的标准特征集(signature matrix)。这些数据应当被整理成适合程序读取的形式[^1]。 #### 执行 CIBERSORT 分析 一旦准备工作完成,便可通过调用特定函数来进行实际计算。以下是采用默认参数设置的一个简单例子,在此过程中会输出估计得到的各种细胞比例结果。 ```r # 加载所需包并导入数据 expr_matrix <- read.csv("path/to/expression_data.csv", row.names=1) # 设定签名矩阵路径 sig_file_path <- "path/to/signature_matrix.txt" # 调用 CIBERSORT 函数进行估算 result <- run_cibersort(expr_matrix, sig_file_path) # 查看部分结果概览 head(result$Fraction) ``` 上述代码片段展示了如何加载外部数据以及启动核心算法的过程。值得注意的是,具体实现细节可能会因版本差异而有所不同,请参照官方文档获取最新指导说明。 #### 结果解释与可视化 经过处理后所获得的结果通常是各类型细胞占总群体的比例数值列表。为进一步探索潜在关联模式,可借助多种统计测试手段评估不同条件下相对丰度变化情况,并绘制热图、散点图等形式直观呈现出来。 例如,下面这段脚本实现了对两组间显著改变成分的筛选及其图形化展示功能: ```r # 假设有两个条件 A 和 B 对应的数据框分别为 df_A 和 df_B diff_cells <- compare_fractions(df_A$result$Fraction, df_B$result$Fraction) # 绘制火山图表示差异程度分布状况 plot_volcano(diff_cells$logFC, diff_cells$pvalue) ``` 以上操作不仅有助于理解个体内部复杂的免疫状态构成,也为发现新的生物标记物提供了有力依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值