Seal Report使用教程(一)——简单介绍

原文地址:http://blog.csdn.net/u012538990/article/details/77119916


文章目录:


Seal Report使用教程(二)——项目文件介绍

Seal Report使用教程(三)——配置数据库连接

Seal Report使用教程(四)——创建数据表

Seal Report使用教程(五)——数据报表

Seal Report使用教程(六)——图形报表

Seal Report使用教程(七)——报表与样式配置

Seal Report使用教程(八)——多表关联

Seal Report使用教程(九)——条件筛选

Seal Report使用教程(十)——服务器部署


前言:

Seal Report是统计报表中最好用,最常用的一个。它提供了一个完整的从其他任何数据库产生报表的架构。该产品主要关注于容易安装和报表设计,一旦安装好,报表很快就可以建立并且发布。该组件完全开源,使用C#语言编写。

其主要特征有:

1.动态SQL数据源:可以使用SQL或让Seal引擎构建动态SQL用于查询数据库,

2.本地数据透视表:直接在数据透视表简单的拖放元素,并将它们显示在报表中,还支持HTML5图表等,详细去官网看看,下面看2张报表设计和报表结果的截图:

报表设计:


报表结果:



官方网站:http://www.sealreport.org/

演示地址:http://demo.sealreport.org/

下载地址:http://sealreport.codeplex.com/



Seal Report交流群:605941676




在Python文本挖掘项目中,有很多实例可以参考。其中种常见的实例是使用分词包进行文本分词。例如,可以使用jieba分词包来实现文本分词的功能。引用中提供了jieba分词包的基本使用方法,可以通过导入jieba库,并使用cut方法对文本进行分词处理。下面是简单的示例代码: ```python import jieba text = "我是数据分析-Jacky" words = jieba.cut(text) for word in words: print(word) ``` 该代码会将文本"我是数据分析-Jacky"进行分词,并逐个输出分词结果。这样就可以将文本进行有效的切分,为后续的文本挖掘任务提供基础。当然,在实际的文本挖掘项目中,还可以结合其他功能和算法,如词频统计、情感分析等,来进步分析和挖掘文本数据。希望这个示例能够帮助到你。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [python文本挖掘(二)——实例1(TF-IDF算法)](https://blog.csdn.net/Seal_Wings/article/details/102787359)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [Python数据挖掘-文本挖掘](https://blog.csdn.net/weixin_30470643/article/details/95080458)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值