利用IDL计算马氏距离

本文介绍了如何使用IDL计算马氏距离,强调了马氏距离相对于欧氏距离的优势,并详细阐述了从计算协方差矩阵到求逆,再到最终计算马氏距离的步骤。通过示例数据展示了具体计算过程。
摘要由CSDN通过智能技术生成

利用IDL计算马氏距离

目录

[TOC]来生成目录:

马氏距离

马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。对于一个均值为 μ ,协方差矩阵为 的多变量向量,其马氏距离为 (xμ)T1(xμ) 摘自百度百科

x为一维或多维向量,假定为n维向量,并有m个样本( x1,x2,x3,,xm ),那么向量 μ 即为样本集合的均值。向量 x1 与向量 μ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值