利用IDL计算马氏距离
目录
用 [TOC]
来生成目录:
马氏距离
马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。对于一个均值为 μ ,协方差矩阵为 ∑ 的多变量向量,其马氏距离为 (x−μ)T∑−1(x−μ)−−−−−−−−−−−−−−−−√ 。摘自百度百科
x为一维或多维向量,假定为n维向量,并有m个样本( x1,x2,x3,⋯,xm ),那么向量 μ 即为样本集合的均值。向量 x1 与向量 μ