Vosk 简介与音频转文本实践
Vosk 是一个基于 Kaldi 的开源语音识别工具包,支持离线语音识别。其特点是轻量、高效,并支持多种语言,适用于实时语音转文本场景。
一、Vosk 的原理
1. 基础原理
Vosk 基于 Kaldi 的语音识别模型,核心流程包括:
- 声学模型(Acoustic Model):将音频信号转换为声学特征。
- 语言模型(Language Model):通过概率模型匹配可能的词序列。
- 解码器(Decoder):结合声学模型和语言模型生成最终的转录文本。
2. 优势
- 离线识别:不依赖云端服务,保障隐私和低延迟。
- 多语言支持:内置多种语言模型,开箱即用。
- 跨平台:支持 Python、JavaScript、C++ 等多种语言及操作系统。
二、实践:使用 Vosk 进行音频转文本
以下示例以 Python 为例,展示如何使用 Vosk 实现音频转文本。
1. 环境准备
安装 Vosk
pip install vosk
安装音频处理库
pip install soundfile
2. 下载语言模型
- 从 Vosk 模型库 下载合适的语言模型(如英文
vosk-model-small-en-us-0.15
或中文vosk-model-small-cn-0.22
)。 - 解压后放置在项目目录下。
3. Python 实现代码
以下代码实现了音频文件的转文本:
import wave
import json
from vosk import Model, KaldiRecognizer
# 加载 Vosk 模型
MODEL_PATH = "vosk-model-small-en-us-0.15" # 修改为您的模型路径
model = Model(MODEL_PATH)
# 处理音频文件
def transcribe_audio(audio_path):
# 打开音频文件
wf = wave.open(audio_path, "rb")
if